

E-EDID ™

39899 Balentine Drive, Suite 125 Newark, CA 94560 Phone: 510 651 5122 Fax: 510 651 5127

# VESA ENHANCED EXTENDED DISPLAY IDENTIFICATION DATA STANDARD

(Defines EDID Structure Version 1, Revision 4)

Release A, Revision 2 September 25, 2006

### Purpose

The E-EDID Standard defines a remotely readable (read by a source) data file stored in an electronic display. The data in this file identifies the characteristics, features and video timing modes supported by the display product. The purpose of this standard is to describe the BASE (block 0) 128-byte data structure "EDID 1.4" (shorthand for EDID Version 1, Revision 4), as well as the overall layout of the data blocks that make up Enhanced EDID. This document specifies the ELEMENTS, data structures and file formats used to organize and store this data. The contents of this data file are used by a video source to configure its graphics processing unit to generate correctly formatted video for the display and to provide additional information for certain application programs.

### Summary

This revision to the E-EDID Standard adds support for Consumer Electronic Products (Model Year and Aspect Ratio) and PC Products (CVT {Coordinated Video Timing}, Established Timings III, Additional Video Interfaces, Expanded Display Range Limits, optional Product Features and Timing Mode Priorities). This document contains specifications for the mandatory and optional elements of BASE EDID. These data formats are designed to support both computer based products and digital television products. Optional EDID EXTENSIONs are defined in separate VESA & CEA Standards.

Note: This document supersedes all previous versions of the EDID and E-EDID Standards.

The EDID 1.4 structure is intended to be backward compatible (key ELEMENTS only) with EDID structures 1.0, 1.1, 1.2 and 1.3 as implemented in most commercially available displays.

This document contains specifications for the mandatory core ELEMENTS of Enhanced EDID. Optional EDID extensions are defined in separate documents. Use of EDID extensions described in this document requires that the addressing methods described in the E-DDC (Enhanced Display Data Channel) Standard are used.

## Preface

### **Intellectual Property**

Copyright © 1994 - 2006 Video Electronics Standards Association. All rights reserved.

While every precaution has been taken in the preparation of this standard, the Video Electronics Standards Association and its contributors assume no responsibility for errors or omissions, and make no warranties, expressed or implied, of functionality or suitability for any purpose.

### Trademarks

All trademarks used within this document are the property of their respective owners. VESA, DDC, E-DDC, DPMS, DPM, EDID, E-EDID, EVC, P&D, VDIF, GTF, CVT, VTB-EXT, DI-EXT and DisplayPort are trademarks of the Video Electronics Standards Association.

I<sup>2</sup>C is a trademark owned by Philips.

### Patents

VESA draws attention to the fact that it is claimed that compliance with this specification may involve the use of a patent or other intellectual property right (collectively, "*IPR*"). VESA takes no position concerning the evidence, validity, and scope of this *IPR*.

Attention is drawn to the possibility that some of the elements of this VESA *Specification* may be the subject of *IPR* other than any identified above. VESA shall not be held responsible for identifying any or all such *IPR*, and has made no inquiry into the possible existence of any such *IPR*.

THIS SPECIFICATION IS BEING OFFERED WITHOUT ANY WARRANTY WHATSOEVER, AND IN PARTICULAR, ANY WARRANTY OF NON-INFRINGEMENT IS EXPRESSLY DISCLAIMED. ANY IMPLEMENTATION OF THIS SPECIFICATION SHALL BE MADE ENTIRELY AT THE IMPLEMENTER'S OWN RISK, AND NEITHER VESA, NOR ANY OF ITS MEMBERS OR SUBMITTERS, SHALL HAVE ANY LIABILITY WHATSOEVER TO ANY IMPLEMENTER OR THIRD PARTY FOR ANY DAMAGES OF ANY NATURE WHATSOEVER DIRECTLY OR INDIRECTLY ARISING FROM THE IMPLEMENTATION OF THIS SPECIFICATION.

### Support for this Standard

Clarifications and application notes to support this standard may be written. To obtain the latest standard and any support documentation, contact VESA.

If you have a product, which incorporates EDID, you should ask the company that manufactured your product for assistance. If you are a manufacturer, VESA can assist you with any clarification you may require. All comments or reported errors should be submitted in writing to VESA using one of the following methods.

- Fax: 510 651 5127, direct this note to Technical Support at VESA
- E-mail: support@vesa.org
- Mail: Technical Support Video Electronics Standards Association 39899 Balentine Drive, Suite 125 Newark, CA 94560

### **Conformance Glossary – Definition of Terms**

The following is a list of definitions for certain keywords used through out this document: **shall**: A keyword that indicates a mandatory requirement for compliance with this standard. **should**: A keyword that indicates a choice with a strongly preferred preference – equivalent to "is strongly recommended".

may: A keyword that indicates a choice with no expressed or implied preference.

optional: A keyword that denotes items which may or may not be present in a complaint device.

required: A keyword that denotes items which are mandatory and shall be present in a compliant device.

### **Conformance Glossary – Definition of Notations**

The following table defines a list of notations that are used through out this document:

| Notation      | Definition                                 | Example                                                 |
|---------------|--------------------------------------------|---------------------------------------------------------|
| -             | Subtraction                                | 7 - 3 = 4                                               |
| ÷             | Division                                   | $9 \div 3 = 3$                                          |
| ×             | Multiplication                             | 2 x 3 = 6                                               |
| +             | Addition                                   | 2 + 3 = 5                                               |
| =             | Is Equivalent To                           | A = B                                                   |
| $\rightarrow$ | Thru                                       | $7 \rightarrow 3 \equiv 7, 6, 5, 4, 3$                  |
| /             | Delineator                                 | Offset Pointer or Address                               |
| Binary        | Binary Number, msb → lsb                   | (msb) 10010110 (lsb)                                    |
| Hex           | Hexadecimal Numbers, MSB $\rightarrow$ LSB | (MSB) 14 00 0A FF FEh (LSB)                             |
| Boldface Hex  | Address or Offset                          | 3Fh = is an address located at 3Fh                      |
| Hex Contents  | Hex Contents at Address [h]                | [3Fh] = the hex data stored at address <b>3Fh</b>       |
| Bit Contents  | Contents of Bits at Address [h]            | [Byte 7Ah, bit 1, 0] = Binary data stored in bits 1 & 0 |
|               |                                            | at address 7Ah                                          |
| Dec String    | String of Decimal Numbers                  | 4, 3, 6, 4                                              |
| Hex String    | String of Hexadecimal Numbers              | (14 00 0A FF FE)h                                       |

#### **Definitions of Notations**

### **Revision History**

### Release A September 2, 1999

Initial release of the standard. The body of the standard is derived from the EDID Standard Ver. 3.0.

### Release A Revision 1 February 9, 2000

Consolidate requirements of detailed timing section in section 3.10

Section 3.4 - removed restriction of 00h, 00h, 00h, 00h value for serial number field

Table 3.11 - added note to reference preferred timing mode bit requirements

Table 3.15 - added note for 1 : 1 AR (aspect ratio) in earlier EDID definitions

Table 3.16 – corrected order of bits in Vertical Sync format description

Table 3.17 - added definition for stereo flag bits values of 0,0,x

Table 3.20 - added clarification to round up Max pixel; clock value

### Release A Revision 2 September 25, 2006

Preface - Added a Conformance Glossary for definitions of terms and notations. Added a List of Tables.

Section 1 Overview - Revised Summary in Section 1.1 and added Scope in Section 1.2.

Section 1.5 Reference Documents - Revised list and partitioned into Section 1.5.1 Normative Documents and Section 1.5.2 Reference Documents.

Section 2 EDID Structures - Added Table 2.1 History of EDID Structures in Section 2.1; added Table 2.2 Comparison of EDID Structures (defines required, optional and recommended elements of EDID data structures 1.0 to 1.4) and added Section 2.1.7 Compatibility of EDID 1.x Structures.

Section 2.2 EDID Extension Blocks - Revised/added the following:

Section 2.2.1 Order of EDID Extension Blocks - note that Block Maps are now optional;

Section 2.2.2 General Extension Block Format;

Section 2.2.3 EDID Block Map Extension and

Section 2.2.4 EDID Extension Tags Assigned by VESA.

Section 3.1 EDID Format Overview - Updated contents of Table 3.1.

Section 3.4.1ID Manufacturer Name - Updated PNPID Contact Information.

Section 3.4.4 Week & Year of Manufacture - Added option to declare Model Year.

Section 3.6.1 Video Input Definition -Added Color Bit Depth declaration to Digital Video Interfaces and updated Supported Digital Interfaces.

Section 3.6.2 H & V Screen Size - Added option to declare Screen Aspect Ratio (Portrait or Landscape) in place of H & V Screen Size.

Section 3.6.4 Feature Support Byte - Added Supported Color Encoding Formats; Replaced Preferred Timing Mode (PTM) Bit with PTM includes or does not include Native Pixel Format/Preferred Refresh Rate of the display device and replaced GTF Bit with Continuous or Non-Continuous Frequency Display.

Section 3.10 - 18 Byte Descriptors - Changed terminology, formally known as Detailed Timing Descriptor Block.

Section 3.10.2 Detailed Timing Descriptor - Added option to include aspect ratio for DTV timing modes; included definitions for Analog Composite, Bipolar Analog Composite, Digital Composite & Digital Separate.

Section 3.10.3.3 Display Range Limits - formally known as Monitor Range Limits – increased range by adding optional Display Range Limits Offsets and added optional GTF (default), GTF (secondary curve) & CVT Support Information.

Section 3.10.3.7 Color Management Data - Added optional short hand CMD definition.

Section 3.10.3.8 3 Byte CVT Codes - Added optional 3 Byte CVT Codes.

Section 3.10.3.9 Established Timings III - Added optional Established Timings III.

Section 3.12 Notes Regarding Borders - Made corrections and updates to the video timing parameter definition drawing.

Section 4 EDID Extensions - Updates and corrections were added.

Section 5 Timing Information Priority Order - Updates and corrections were added.

Section 6 APPENDIX A – Three new sample EDID tables were included.

Section 7 APPENDIX B - Added GTF & CVT Compatibility Issues.

Section 8 APPENDIX C - Added a Glossary.

Section 9 APPENDIX D - Updated FAQ section.

Section 10 APPENDIX E - Added ASCII Reference Tables.

# Acknowledgments

This document would not have been possible without the efforts of the VESA Display Systems Committee's EDID Task Group. In particular, the following individuals and their companies have contributed significant time and knowledge.

### Release A, Rev. 2

| Syed Athar Hussain | ATI Technologies |                           |
|--------------------|------------------|---------------------------|
| Chi Tai Hong       | Chrontel         |                           |
| Joe Goodart        | Dell             |                           |
| James R. Webb      | DisplayLabs      |                           |
| Bob Myers          | Hewlett-Packard  |                           |
| Gang Han           | NVIDIA           |                           |
| Isaac Yang         | NVIDIA           |                           |
| Glenn Adler        | Philips          |                           |
| Ian Miller         | Samsung          |                           |
| Paul Doyle         | Sony             |                           |
| Robert Blanchard   | Sony             |                           |
| Joe Lamm           | Tech Source      |                           |
| Alain d'Hautecourt | ViewSonic        | Task Group Chair & Editor |

### Release A, Rev. 1 and/or previous

| ofx                |
|--------------------|
| non                |
| 11                 |
| o Touchsystems     |
| wlett-Packard      |
| tachi              |
| M                  |
| M                  |
| M                  |
| el                 |
| crochip Technology |
| crosoft            |
| tsubishi           |
| EC                 |
| EC                 |
| kia                |
| nasonic            |
| ilips              |
| shiba              |
| ewSonic            |
|                    |
|                    |

# **Table of Contents**

| Preface                                                                                  | 2  |
|------------------------------------------------------------------------------------------|----|
| Revision History                                                                         | 4  |
| Release A September 2, 1999                                                              | 4  |
| Release A Revision 1 February 9, 2000                                                    |    |
| Release A Revision 2 September 25, 2006                                                  |    |
| List of Tables                                                                           |    |
|                                                                                          |    |
| 1. OVERVIEW                                                                              | 10 |
| 1.1 Summary                                                                              |    |
| 1.2 Scope                                                                                |    |
| 1.3 Background                                                                           |    |
| 1.4 Standard Objectives                                                                  |    |
| 1.5 Reference Documents                                                                  |    |
| 1.5.1 Normative Reference Documents                                                      |    |
| 1.5.2 Informative Reference Documents                                                    | 11 |
| 2. EDID STRUCTURES                                                                       |    |
| 2.1 Base EDID: Past and Present                                                          | 13 |
| 2.1.1 EDID 1.0                                                                           |    |
| 2.1.2 EDID 1.1                                                                           |    |
| 2.1.3 EDID 1.2                                                                           |    |
| 2.1.4 EDID 1.3                                                                           |    |
| 2.1.5 EDID 1.4                                                                           |    |
| 2.1.6 EDID Structures Comparison Table                                                   |    |
| 2.1.7 Compatibility of EDID 1.x Data Structures Handling Updates to EDID Data Structures |    |
| 2.2 EDID Extension Blocks                                                                |    |
| 2.2.1 EDID Extensions: Order of the Blocks                                               |    |
| 2.2.2 EDID Extensions: General Extension Block Format                                    | 17 |
| 2.2.3 EDID Extensions: EDID Block Map Extension                                          | 17 |
| 2.2.4 EDID Extension Tags Assigned by VESA                                               | 18 |
| 3. Extended Display Identification Data (EDID) Version 1 Revision 4                      |    |
| 3.1 EDID Format Overview                                                                 |    |
| 3.2 Data Format Conventions                                                              |    |
| 3.3 Header: 8 Bytes                                                                      |    |
| 3.4 Vendor & Product ID: 10 Bytes                                                        |    |
| 3.4.1 ID Manufacturer Name: 2 Bytes                                                      | 21 |
| 3.4.2 ID Product Code: 2 Bytes                                                           |    |
| 3.4.3 ID Serial Number: 4 Bytes                                                          |    |
| 3.4.4 Week and Year of Manufacture or Model Year: 2 Bytes                                |    |
| 3.5 EDID Structure Version & Revision: 2 Bytes                                           |    |
| 3.6 Basic Display Parameters and Features: 5 Bytes                                       |    |
| 3.6.1 Video Input Definition: 1 Byte                                                     |    |
| 3.6.2 Horizontal and Vertical Screen Size or Aspect Ratio: 2 Bytes                       |    |
| 3.6.3 Display Transfer Characteristics (Gamma): 1 Byte                                   |    |
| 3.6.4 Feature Support: 1 Byte                                                            |    |
| 3.7 Display x, y Chromaticity Coordinates: 10 Bytes                                      |    |
| 3.8 Established Timings I & II: 3 bytes                                                  |    |
| 3.9 Standard Timings: 16 Bytes                                                           |    |
| 3.10 18 Byte Descriptors - 72 Bytes                                                      |    |
| 3.10.1 The First 18 Byte Descriptor                                                      |    |
| 3.10.2 Detailed Timing Descriptor: 18 bytes                                              | 32 |

| 3    | .10.3 Di  | splay Descriptor Definitions - 18 bytes                                   |    |
|------|-----------|---------------------------------------------------------------------------|----|
|      | 3.10.3.1  | Display Product Serial Number Descriptor Definition (tag #FFh)            |    |
|      | 3.10.3.2  | Alphanumeric Data String Descriptor Definition (tag #FEh)                 |    |
|      | 3.10.3.3  | Display Range Limits & Additional Timing Descriptor Definition (tag #FDh) |    |
|      | 3.10.3.3. |                                                                           |    |
|      | 3.10.3.3. |                                                                           |    |
|      | 3.10.3.4  | Display Product Name (ASCII) String Descriptor Definition (tag #FCh)      |    |
|      | 3.10.3.5  | Color Point Descriptor Definition (tag #FBh)                              |    |
|      | 3.10.3.6  | Standard Timing Identifier Definition (tag #FAh)                          |    |
|      | 3.10.3.7  | Color Management Data Definition (tag #F9h)                               |    |
|      | 3.10.3.8  | CVT 3 Byte Code Descriptor Definition (tag #F8h)                          |    |
|      | 3.10.3.9  | Established Timings III Descriptor Definition (tag #F7h)                  |    |
|      | 3.10.3.10 | Unused – Reserved Data Tag Number (Tags #11h to #F6h)                     |    |
|      | 3.10.3.11 | Dummy Descriptor Definition (Tag #10h)                                    |    |
|      | 3.10.3.12 | Manufacturer Specified Data Tag Numbers (Tags #00h to #0Fh)               |    |
| 3.11 |           | on Flag and Checksum                                                      |    |
| 3.12 | Note Re   | egarding Borders                                                          |    |
| 4.   | EDID Ext  | tensions                                                                  |    |
| 5.   | Timing Ir | oformation Priority Order                                                 |    |
| 6.   | APPEND    | IX A - Sample EDIDs                                                       |    |
| 6.1  | EXAM      | PLE 1: Sample BASE EDID (Block 0) for an LCD Desktop IT Display           |    |
| 6.2  | EXAM      | PLE 2: Sample BASE EDID & CEA861 Extension for a DTV Display              |    |
| 6.3  |           | PLE 3: Sample BASE EDID & CEA861 Extension for a IT/DTV Display           |    |
| 7.   | APPEND    | IX B – GTF & CVT Compatibility Issues                                     | 76 |
| 8.   | APPEND    | IX C - Glossary                                                           |    |
| 9.   | APPEND    | IX D - Answers To Commonly Asked Questions                                | 84 |
| 10.  | APPEN     | NDIX E – ASCII Reference Tables                                           |    |

# Tables

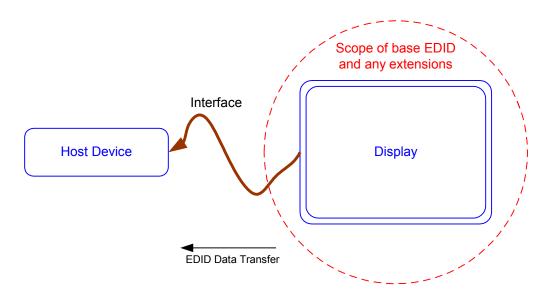
| Table 2.1 - EDID Structures – History                            |    |
|------------------------------------------------------------------|----|
| Table 2.2 - EDID Structures – Comparison Table                   | 15 |
| Table 2.3 - EDID Structures - Comparison Table - Key             | 15 |
| Table 2.4 – E-EDID High Level Layout                             |    |
| Table 2.5 - EDID Structure – General Extension Block Format      |    |
| Table 2.6 - EDID Structure – Block Map Extension                 | 17 |
| Table 2.7 - EDID Structure – Extension Tag Numbers               |    |
| Table 3.1 - EDID Structure Version 1, Revision 4                 | 19 |
| Table 3.2 - Data Format Conventions                              | 20 |
| Table 3.3 - EDID Header Format                                   | 20 |
| Table 3.4 – Vendor & Product ID Structure                        | 21 |
| Table 3.5 - ID Manufacturer Name                                 | 21 |
| Table 3.6 – ID Product Code                                      | 21 |
| Table 3.7 - ID Serial Number                                     |    |
| Table 3.8 – Week & Year of Manufacture or Model Year             |    |
| Table 3.9 - EDID Structure Version and Revision Numbers          |    |
| Table 3.10 - Basic Display Parameters and Features               |    |
| Table 3.11 - Video Input Definition                              |    |
| Table 3.12 - Horizontal and Vertical Screen Size or Aspect Ratio | 25 |
| Table 3.13 – Display Transfer Characteristics (Gamma)            |    |
| Table 3.14 - Feature Support                                     |    |
| Table 3.15 – DPMS vs. DPM State Mappings                         |    |
|                                                                  |    |

| Table 3.16 - Chromaticity and Default White Point                            |    |
|------------------------------------------------------------------------------|----|
| Table 3.17 - Ten bit Binary Fraction Representation                          |    |
| Table 3.18 - Established Timings I & II                                      |    |
| Table 3.19 - Standard Timings                                                |    |
| Table 3.20 - 18 Byte Descriptors                                             |    |
| Table 3.21 - Detailed Timing Definition Part 1                               |    |
| Table 3.22 - Detailed Timing Definition Part 2                               |    |
| Table 3.23 - Display Descriptor Summary                                      |    |
| Table 3.24 – Display Product Serial Number Descriptor Definition             |    |
| Table 3.25 – Alphanumeric Data String Descriptor Definition                  |    |
| Table 3.26 – Display Range Limits & Timing Descriptor Block Definition       |    |
| Table 3.27 – Display Range Limits & GTF Secondary Curve Block Definition     | 41 |
| Table 3.28 – Display Range Limits & CVT Support Definition                   |    |
| Table 3.29 – Display Product Name (ASCII) String Descriptor Block Definition |    |
| Table 3.30 – Additional Color Point Descriptor Definition                    |    |
| Table 3.31 – Ten bit Binary Fraction Representation                          |    |
| Table 3.32 – Ten bit Binary Fraction Representation                          |    |
| Table 3.33 – Standard Timings (#9 to #14) Identifier Definitions             | 45 |
| Table 3.34 - Color Management Data Descriptor Definition                     | 45 |
| Table 3.35 – CVT 3 Byte Code Descriptor Definition                           | 47 |
| Table 3.36 – Established Timings III Descriptor Definition                   |    |
| Table 3.37 – Unused Reserved Data Tag Numbers                                | 50 |
| Table 3.38 – Dummy Descriptor Definition                                     | 50 |
| Table 3.39 – Manufacturer Specified Data Descriptor Definition               | 50 |
| Table 3.40 - Extension Flag and Checksum                                     |    |
| Table 5.1 – E-EDID Timing Mode Priority                                      | 53 |

# 1. OVERVIEW

### 1.1 Summary

The E-EDID Standard defines requirements and options for data structures that enable a display (sink) to inform the host (source) about its identity and capabilities. This standard also makes recommendations for some data fields. Host (source) devices are required to read and properly handle the data that a display (sink) provides with these data structures. The EDID data structure is independent of the communications protocol used between the display (sink) and the host (source). Enhanced EDID defines a basic data structure (known as BASE EDID or block 0) of 128 bytes that all compliant displays shall supply. E-EDID also defines the rules for how EXTENSIONS may be added to the BASE structure.


The Enhanced EDID family of documents:

- 1. Enhanced EDID Standard (Basic 128-byte data structure. Rules for how EDID EXTENSIONS are mapped.)
- Optional EDID EXTENSION Standards (Definitions of the data structures contained in the optional EDID EXTENSIONS.) Refer to Section 2.2.4 of this standard for a list of current EDID EXTENSION Blocks. Contact the VESA office for the latest list of VESA and CEA defined EXTENSIONS.
- 3. VESA E-EDID Implementation Guide, Version 1.0, June 4, 2001.

## 1.2 Scope

The information contained within an EDID Structure, whether this is simply a BASE EDID or the combination of a BASE EDID and one or more EDID EXTENSIONS, relates to the whole display product and not individual elements of the product.

The drawing below shows this in graphical form – the BASE EDID (and any EDID EXTENSION) that is transferred from the display to the host device specifies capabilities of the combination of components and sub-assemblies contained within the display.



**Note:** Generally the display identified above will be a product connected to a host (source) via an external interface. However, in some cases products with an embedded display may use EDID, in which case the display above may be a subsystem of the product with an internal interface to the control (host) subsystem.

### 1.3 Background

Enhanced EDID was originally created to define how multiple optional EDID EXTENSIONS shall be attached to the BASE EDID. These EXTENSIONS shall be used to describe additional features and capabilities of current and future displays. This document also defines a revision (Version 1, Rev. 4) to the BASE EDID and shall supersede all previous versions of EDID. EDID structure Version 1, Rev. 4 is strongly recommended for all new designs.

### 1.4 Standard Objectives

The EDID Standard was developed by VESA to meet, exceed and/or complement certain criteria. These criteria are set forth as Standard Objectives as follows:

- Support VESA & Microsoft® Plug and Play definitions
- Provide information in a compact format to allow the graphics subsystem to be configured based on the capabilities of the attached display

### 1.5 Reference Documents

**Note:** Standards and document versions identified here are current (as of the release of this document), but users of this document are encouraged to ensure they have the latest versions of referenced standards and documents. These references have been separated into Normative Reference Documents and Informative Reference Documents.

### **1.5.1 NORMATIVE REFERENCE DOCUMENTS**

Understanding the contents of the following normative reference documents is a requirement for understanding the provisions of this standard:

- ISO/IEC 8859-1: 1998 Information Technology 8-bit single-byte coded graphic character sets -Part 1: Latin alphabet No. 1 -ASCII Codes
- VESA Coordinated Video Timing (CVT<sup>™</sup>) Standard, Version 1.1, September 10, 2003
- VESA Display Color Management (DCM<sup>™</sup>) Standard, Version 1, January 6, 2003
- VESA Display Information Extension (DI-EXT<sup>™</sup>) Block Standard, Release A, August 21, 2001
- VESA Display Power Management (DPM<sup>™</sup>) Standard, Release A, March 3, 2003
- VESA Enhanced Display Data Channel Standard (E-DDC<sup>™</sup>), Version 1, September 2, 1999
- VESA and Industry Standards and Guidelines for Computer Display Monitor Timing (DMT<sup>™</sup>), Version 1.0, Revision 10, October 29, 2004
- VESA Plug & Play (PnP<sup>™</sup>) Standard for the Display/Graphics Subsystem, Release A, June 7, 2004
- CIE 15.2 Colorimetry Revision 86, Date: 1986

### **1.5.2 INFORMATIVE REFERENCE DOCUMENTS**

The following informative reference documents contain information that is useful in understanding this standard:

- DVI Specifications, Revision 1.0, 02 April 1999 <u>www.ddwg.org</u>
- CEA-861-D Standard, A DTV Profile for Uncompressed High Speed Digital Interfaces; <u>www.global.ihs.com</u>
- HDMI Specifications: Refer to www.hdmi.org for more information on HDMI.
- Microsoft Windows and the Plug and Play Framework Architecture, March 1994,
- Microsoft Plug and Play for Windows 2000 and Windows XP, December 2001,
- Microsoft Windows XP Plug and Play Overview...
- Microsoft Plug and Play Technology, December 2001.

- Microsoft Windows Vista Logo Program Client System Requirements, Version 3.0, Draft Revision 0.9 www.microsoft.com/whdc/winlogo/hwrequirements.mspx
- VESA Enhanced EDID Localized String Extension (LS-EXT<sup>™</sup>) Standard, Release A, July 10, 2003
- VESA E-EDID Implementation Guide, Version 1.0, June 4, 2001
- VESA Generalized Timing Formula Standard (GTF<sup>™</sup>), Version 1.0, December 18, 1996
- VESA Video Timing Block Extension (VTB-EXT<sup>™</sup>) Data Standard, Release A, Nov. 24, 2003
- VESA Video BIOS Extensions for Display Data Channel Standard VBE/DDC<sup>™</sup>, Version 1.1, Nov. 18, 1999
- VESA Glossary of Terms: Go to <u>www.vesa.org</u> and click on Glossary of Term for access to an interactive online glossary.

# 2. EDID STRUCTURES

## 2.1 BASE EDID: Past and Present

Table 2.1 shows the history of EDID Structure definitions:

| <u>Standard</u> | <u>Version /</u><br><u>Release</u> | <u>Revision</u> | <u>Date</u> | <u>Base EDID</u><br><u>Structure(s)</u> | <u>Comment</u>                                        |  |       |
|-----------------|------------------------------------|-----------------|-------------|-----------------------------------------|-------------------------------------------------------|--|-------|
| DDC             | V1.0                               | 0               | 8/12/94     | V1 R0 128 bytes – initial definition    |                                                       |  |       |
| EDID            | V2                                 | 0               | 4/09/96     | V1 R0                                   | 128 bytes - permitted, no definition                  |  |       |
| EDID            | V 2                                | 0               | 4/09/90     | V1 R1                                   | 128 bytes – revised definition based on V1 R0         |  |       |
| EDID            | VO                                 | 1               | 7/24/06     | V1 R0                                   | 128 bytes - permitted, no definition                  |  |       |
| EDID            | V2                                 | 1               | 7/24/96     | V1 R1                                   | 128 bytes – preferred definition                      |  |       |
|                 |                                    |                 |             | V1 R0                                   | 128 bytes - permitted, no definition                  |  |       |
| EDID            | V3                                 |                 | 11/13/97    | V1 R1                                   | 128 bytes - permitted, no definition                  |  |       |
| EDID            | ۷3                                 | -               | 11/13/97    | V1 R2                                   | 128 bytes – revised definition based on V1 R1         |  |       |
|                 |                                    |                 |             | V2 R0                                   | 256 bytes for P&D standard – new definition           |  |       |
|                 |                                    |                 |             | V1 R0                                   | 128 bytes, use to end $1/1/2000 - no$ definition      |  |       |
|                 | Release A                          | -               | 9/02/99     | V1 R1                                   | 128 bytes, use to end $1/1/2000 - no$ definition      |  |       |
| E-EDID          |                                    |                 |             | V1 R2                                   | 128 bytes, use to end $1/1/2000 - no$ definition      |  |       |
|                 |                                    |                 |             |                                         |                                                       |  | V1 R3 |
|                 |                                    |                 |             | V2 R0                                   | 256 bytes for P&D standard - permitted, no definition |  |       |
|                 | Delegan                            | 1               | 2/00/00     | V1 R3                                   | 128 bytes – preferred definition                      |  |       |
| E-EDID          | E-EDID Release A 1                 |                 | 2/09/00     | V2 R0                                   | 256 bytes for P&D standard - permitted, no definition |  |       |
| E-EDID          | Release A                          | 2P              | TBD         | V1 R4                                   | 128 bytes – revised definition based on V1 R3         |  |       |

Table 2.1 - EDID Structures – History

The following sections (2.1.1  $\rightarrow$  2.1.5) provide additional information on the history of EDID 1.x structure definitions.

### 2.1.1 EDID 1.0

EDID structure 1.0 (Version 1, Revision 0) was the original 128-byte file format introduced in the DDC Standard Version 1.0 Revision 0 issued in August 1994. EDID 1.0 shall not be used in new display products.

## 2.1.2 EDID 1.1

EDID structure 1.1 added definitions for monitor descriptors as an alternate use of the space originally reserved for detailed timings, as well as definitions for previously unused fields. Structure 1.1 was introduced in the EDID Standard Version 2 issued in April 1996. EDID 1.1 shall not be used in new display products.

## 2.1.3 EDID 1.2

EDID structure 1.2 added definitions to existing data fields. Structure 1.2 was introduced in EDID Standard Version 3. EDID 1.2 shall not be used in new display products.

## 2.1.4 EDID 1.3

EDID structure 1.3 added definitions for secondary Generalized Timing Formula (GTF) curve coefficients. Structure 1.3 was introduced in E-EDID Standard Release A issued in September 1999. EDID 1.3 was based on the same core as all other EDID 1.x structures.

Structure 1.3 is a superset of structure 1.2. The main difference between the two is that 1.3 allows the Monitor Range Limits descriptor to define coefficients for a secondary GTF curve, and mandates a certain set of monitor descriptors. EDID 1.3 is strongly discouraged for use in new display product designs.

## 2.1.5 EDID 1.4

EDID structure 1.4 is introduced in this document. EDID structure 1.4 adds support for Consumer Electronic Products (Model Year and Aspect Ratio) and PC Products (CVT, Established Timings III, Additional Video Interfaces, Expanded Display Range Limits, optional Product Features and Timing Mode Priorities). Certain Display Descriptors (formally known as Monitor Descriptors) that were mandatory in EDID 1.3 are now optional.

EDID 1.4 is based on the same core as all other EDID 1.x structures. EDID 1.4 is the new baseline for EDID data structures and is strongly recommended for all new designs. However, there are a few incompatible data fields in EDID 1.4 that were changed to support emerging industry requirements.

Structure 1.4 is a superset of structure 1.3. The main difference between the two is that 1.4 allows the Display Range Limits descriptor to define support for CVT, and certain display descriptors mandated in EDID 1.3 are now optional. Some additional changes have been included to provide support for DTV products.

## 2.1.6 EDID Structures --- Comparison Table

Table 2.2 contains a comparison of EDID Data Structures (1.0 through 1.4). The table contains a listing of required, optional and optional (but recommended) ELEMENTS. Refer to the Key in Table 2.3 for the definitions of the symbols used in the Table 2.2.

|                                       | BASE EDID Structure |         |         |              |                         |
|---------------------------------------|---------------------|---------|---------|--------------|-------------------------|
|                                       | 1.0                 | 1.1     | 1.2     | 1.3          | 1.4                     |
| Block "0" Header                      | ©                   | $\odot$ | $\odot$ | $\odot$      | V                       |
| ID Manufacturer                       | ©                   | ©       | $\odot$ | $\odot$      | $\overline{\mathbf{v}}$ |
| ID Product Code                       | ©                   | ©       | $\odot$ | $\odot$      | $\overline{\mathbf{v}}$ |
| ID Serial Number                      | x                   | x       | x       | X            | X                       |
| Week of Manufacture                   | x                   | x       | x       | X            | X                       |
| Year of Manufacture or Model Year     | ©                   | ©       | $\odot$ | $\odot$      | $\square$               |
| EDID version                          | V                   | Ø       | M       | V            | $\square$               |
| EDID revision                         | V                   | Ø       | M       | V            | $\square$               |
| Basic Display Parameters & Features   | ©                   | ©       | $\odot$ | $\odot$      | V                       |
| Display x, y Chromaticity Coordinates | ©                   | ©       | ٢       | $\odot$      | Ø                       |
| (Phosphor or Filter Chromaticity)     |                     |         |         |              |                         |
| Established Timings                   | x                   | x       | x       | ×            | ×                       |
| Standard Timing Identifications       | x                   | x       | x       | ×            | ×                       |
| Preferred Timing Descriptor Block     | x                   | x       | x       | $\checkmark$ | $\square$               |
| Range Limits Descriptor Block         | n/a                 | x       | x       | $\checkmark$ | €                       |
| Monitor Name Descriptor Block         | n/a                 | x       | x       | V            | €                       |
| Other Descriptor Blocks               | n/a                 | x       | x       | X            | x                       |
| Extension flag                        | ©                   | ©       | $\odot$ | $\odot$      | V                       |
| Checksum                              | ٢                   | ٢       | Ü       | $\odot$      | V                       |

### Table 2.2 - EDID Structures – Comparison Table

 Table 2.3 - EDID Structures – Comparison Table - Key

| V       | Explicit requirement mandatory (a "shall")                        |
|---------|-------------------------------------------------------------------|
| $\odot$ | No requirement stated but commonly understood to be a requirement |
| Q       | Optional but recommended                                          |
| X       | Optional                                                          |
| n/a     | Not applicable                                                    |

# **2.1.7** Compatibility of EDID 1.x Data Structures --- Handling Updates to EDID Data Structures

On occasion, VESA will publish updates (revisions) to the E-EDID Standard. Some of these updated standards may contain new EDID structure definitions. When VESA publishes a new EDID structure with a new revision number (and the version number stays the same), the new EDID structure is backward compatible (key ELEMENTS only). For legacy support, an older host system (that recognizes EDID version 1, revision 3, for example) connected to a display product with a newer EDID structure (for example; version 1, revision 4), the host shall decode the EDID data using the older EDID structure definitions (for example; version 1, revision 3 definitions).

When doing this, the host (graphics system driver or operating system) EDID read and decode may result in some errors. The host (graphics system driver or operating system) may not understand certain ELEMENTS or data fields within the EDID Block. The host shall ignore these ELEMENTS or data fields. The "Plug & Play" process must still work.

If an internet connection is available, the older host may search for a driver that can decode the newer EDID structure.

An older host (source) shall never shut down a connected video output port when it detects a display with a newer EDID structure which the host may not completely understand. For more information on this subject, refer to the VESA PnP Standard or appropriate standard or document for the interface or application in question.

## 2.2 EDID EXTENSION Blocks

E-EDID, based on EDID structure 1.4, allows additional data to be stored using multiple (one or more) EXTENSION Blocks attached to BASE EDID in a single file. In the minimum configuration, E-EDID consists of just one data Block --- the BASE EDID, also known as Block 0. Each Block is 128 bytes in length.

## 2.2.1 EDID EXTENSIONS: Order of the Blocks

EXTENSION Blocks are arranged sequentially after Block 0. BASE EDID is stored in Block 0 and is the only mandatory Block. Table 2.4 describes the Enhanced EDID high level layout of the required BASE EDID Block and optional EXTENSION Blocks.

| Segment Pointer /<br>Addresses                     | Block<br>Number<br>'N' | EDID 1.3<br>Block<br>Description                                    | EDID 1.4<br>Block<br>Description                                                                                                  |  |
|----------------------------------------------------|------------------------|---------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|--|
| $00h / 00h \rightarrow 7Fh$                        | 0                      | BASE EDID 1.3 Structure                                             | BASE EDID 1.4 Structure                                                                                                           |  |
| $00h  /  80h \rightarrow FFh$                      | 1                      | EXTENSION Block 1 if $N = 1$ or<br>Block Map 1 if $2 \le N \le 127$ | EXTENSION Block 1 or<br>Block Map 1 (Optional)                                                                                    |  |
| $01h / 00h \rightarrow 7Fh$                        | 2                      | EXTENSION Block 2                                                   | EXTENSION Block 2                                                                                                                 |  |
| $01h / 80h \rightarrow FFh$                        | 3                      | EXTENSION Block 3                                                   | EXTENSION Block 3                                                                                                                 |  |
| $02h / 00h \rightarrow 7Fh$                        | 4                      | EXTENSION Block 4                                                   | EXTENSION Block 4                                                                                                                 |  |
| $\bullet \bullet h / 00h \rightarrow 7Fh$          | •••                    | EXTENSION Block $\bullet \bullet \bullet$                           | EXTENSION Block ●●●                                                                                                               |  |
| •••                                                | •••                    | •••                                                                 | •••                                                                                                                               |  |
| $3Fh / 80h \rightarrow FFh$                        | 127                    | EXTENSION Block 127                                                 | EXTENSION Block 127                                                                                                               |  |
| 40h / 00h $ ightarrow$ 7Fh                         | 128                    | Block Map 2 if $129 \le N \le 254$                                  | Block Map 2 (Optional) or<br>EXTENSION Block 128                                                                                  |  |
| $40h / 80h \rightarrow FFh$                        | 129                    | EXTENSION Block 129                                                 | EXTENSION Block 129                                                                                                               |  |
| $\bullet \bullet h / 00h \rightarrow 7Fh$          | •••                    | EXTENSION Block •••                                                 | EXTENSION Block •••                                                                                                               |  |
| •••                                                | ••• •••                |                                                                     | •••                                                                                                                               |  |
| $7\text{Eh}$ / $80\text{h} \rightarrow FF\text{h}$ | 253                    | EXTENSION Block 253                                                 | EXTENSION Block 253                                                                                                               |  |
| $7Fh / 00h \rightarrow 7Fh$                        | 254                    | EXTENSION Block 254                                                 | EXTENSION Block 254                                                                                                               |  |
| <b>7Fh / 80h</b> $\rightarrow$ <b>FFh</b> 255      |                        | Block 255 is not available.                                         | If Block Maps are not used then Block<br>255 is an EXTENSION Block.<br>If Block Maps are used then Block 255<br>is not available. |  |

Table 2.4 – E-EDID High Level Layout

Notes to Table 2.4:

- 1. Refer to VESA's E-DDC Standard for more information on the Segment Pointer and Addresses shown in Table 2.4.
- 2. For EDID 1.3, if the maximum value of N is '1', then Block 1 contains an Extension Block as defined in sections 2.2.2 and 2.2.4. If the maximum value of N is more than or equal to '2' and less than or equal to '127', then Block 1 is Block Map 1. If the maximum value of N is more than or equal to '129' and less than or equal to '254', then Block 128 is Block Map 2. Block Maps are considered to be EXTENSION Blocks to the base EDID and shall be included in the EXTENSION Block Flag at address **7Eh** in the Base EDID (Block 0).
- 3. For EDID 1.4, Block Maps are optional. Blocks 1 and 128 may contain optional Extension Blocks as defined in sections 2.2.3 and 2.2.4 or they may contain Block Maps.
- 4. All Blocks shall be sequentially stored with no gaps or empty Blocks.
- 5. A partial list of defined Extension Blocks is shown in Table 2.7.
- 6. The variable 'N' in table 2.4 contains the total number of EXTENSION Blocks listed at address 7Eh of the BASE EDID (Block 0). This includes Block Map/s when present.

## 2.2.2 EDID Extensions: General Extension Block Format

Several EXTENSION Blocks have already been defined to contain specific kinds of data. Refer to section 2.2.4 for a list of EXTENSION Blocks. All EXTENSION Blocks except the EXTENSION Block Map shall include one byte for the EXTENSION Block revision number.

| Address           | Byte #              | Value                  | Description                                                                                                         |
|-------------------|---------------------|------------------------|---------------------------------------------------------------------------------------------------------------------|
| 00h               | 0                   | Refer to section 2.2.4 | EXTENSION Block Tag Number                                                                                          |
|                   |                     | $00h \rightarrow FFh$  | Revision number for this EXTENSION Block. One byte binary number. Revisions shall be backward compatible (partial). |
| 01h               | 1                   | Block Tag Number       | Exception: EXTENSION Block Map EXTENSION Blocks 1<br>& 128                                                          |
| $02h \rightarrow$ | $2 \rightarrow$     | $00h \rightarrow FFh$  | EXTENSION Block Data                                                                                                |
| 02h →<br>7Eh      | $2 \rightarrow 126$ | Block Tag Number       | Exception: EXTENSION Block Map EXTENSION Blocks 1 & 128                                                             |
| 7Fh               | 127                 | $00h \rightarrow FFh$  | Checksum for this EXTENSION Block                                                                                   |

 Table 2.5 - EDID Structure – General Extension Block Format

### 2.2.3 EDID Extensions: EDID Block Map Extension

The EXTENSION Block Map (in EXTENSION Blocks #1 & #128) is an optional ELEMENT for EDID structure (Version 1, Revision 4). The EXTENSION Block Map (in EXTENSION Blocks #1 & #128) is a required ELEMENT for EDID structure (Version 1, Revision 3).

An EXTENSION Block map is a special EXTENSION Block that lists tag numbers for all EXTENSION Blocks are stored in a particular display's EDID memory. The tag number entries of the EXTENSION Block Map, prepared by the display manufacturer, shall match the tag numbers of all EXTENSION Blocks that are stored in a display's memory. For a partial listing of EXTENSION Block Tag Numbers refer to Section 2.2.4.

| Address | Byte # | Value                 | Description                                            |
|---------|--------|-----------------------|--------------------------------------------------------|
| 00h     | 0      | F0h                   | EXTENSION Block Tag Number designates "EXTENSION Block |
|         |        |                       | Map"                                                   |
| 01h     | 1      | Block Tag Number      | EXTENSION Block Tag Number for the data stored in      |
| 0111    | 1      | Block Tag Nulliber    | EXTENSION block 2 or block 129                         |
| 02h     | 2      | Dlash Tag Number      | EXTENSION Block Tag Number for the data stored in      |
| 0211    | 2      | Block Tag Number      | EXTENSION block 3 or block 130                         |
| •••     | •••    | •••                   | •••                                                    |
| •••     | •••    | •••                   | •••                                                    |
| •••     | •••    | •••                   | •••                                                    |
| 7Eh     | 126    | Plaak Tag Number      | EXTENSION Block Tag Number for the data stored in      |
| 761     | 120    | Block Tag Number      | EXTENSION block 127 or block 254                       |
| 7Fh     | 127    | $00h \rightarrow FFh$ | Checksum for this EXTENSION Block Map                  |

Table 2.6 - EDID Structure – Block Map Extension

Notes to Table 2.6:

- 1. A partial list of assigned EXTENSION Block Tag Numbers is listed in Section 2.2.4. Contact the VESA Office for the latest list of EXTENSION Block Tag Numbers.
- 2. All EXTENSION Block Tag Numbers shall be sequentially listed (in the Block Map EXTENSION) in the order that the EXTENSION Blocks are stored in EDID memory.
- Addresses without Block Tag Numbers shall be padded with '00h'.

# 2.2.4 EDID Extension Tags Assigned by VESA

EXTENSION Block Tag Numbers are used to numerically identify each type of EXTENSION Block. VESA and other standards groups have developed, and continue to develop, useful EDID EXTENSION Block Standards. VESA maintains the master list of assigned EDID EXTENSION Block Tag Numbers.

| Tag<br>Numbers | Extension Block<br>Description                 |
|----------------|------------------------------------------------|
| 02h            | CEA-EXT: CEA 861 Series Extension (see Note 2) |
|                |                                                |
| 10h            | VTB-EXT: Video Timing Block Extension          |
|                |                                                |
| 40h            | DI-EXT: Display Information Extension          |
|                |                                                |
| 50h            | LS-EXT: Localized String Extension             |
|                |                                                |
| 60h            | DPVL-EXT: Digital Packet Video Link Extension  |
|                |                                                |
| F0h            | EXTENSION Block Map                            |
|                |                                                |
| FFh            | EXTENSIONS defined by the display manufacturer |

Table 2.7 - EDID Structure – Extension Tag Numbers

Notes to Table 2.7:

- 1. Contact the VESA office for the latest list of published EDID EXTENSIONS.
- 2. Refer to the latest revision of the CEA 861 Standard.
- 3. The EXTENSION Block Maps (Tag F0h) located at block 1 and block 128 are in themselves EXTENSION Blocks and shall be included in the Number of EXTENSION Blocks listed at address **7Eh** in the base EDID (block 0).
- 4. More than one copy of the extension blocks (in Table 2.7) may be included in an EDID structure. However, the Block Map EXTENSION (Tag F0h) is limited to 1 or 2 blocks.

# 3. Extended Display Identification Data (EDID) Version 1 Revision 4

# 3.1 EDID Format Overview

| Address | Bytes | Description                                        | Format                                             |  |  |
|---------|-------|----------------------------------------------------|----------------------------------------------------|--|--|
| 00h     | 8     | Header: = (00 FF FF FF FF FF FF 00)h               | See Section 3.3                                    |  |  |
| 08h     | 10    | Vendor & Product Identification:                   | See Section 3.4                                    |  |  |
| 08h     | 2     | ID Manufacturer Name                               | ISA 3-character ID Code                            |  |  |
| 0Ah     | 2     | ID Product Code                                    | Vendor assigned code                               |  |  |
| 0Ch     | 4     | ID Serial Number                                   | 32-bit serial number                               |  |  |
| 10h     | 1     | Week of Manufacture                                | Week number or Model Year Flag                     |  |  |
| 11h     | 1     | Year of Manufacture or Model Year                  | Manufacture Year or Model Year                     |  |  |
| 12h     | 2     | EDID Structure Version & Revision:                 | See Section 3.5                                    |  |  |
| 12h     | 1     | Version Number: = 01h                              | Binary                                             |  |  |
| 13h     | 1     | Revision Number: = 04h                             | Binary                                             |  |  |
| 14h     | 5     | Basic Display Parameters & Features:               | See Section 3.6                                    |  |  |
| 14h     | 1     | Video Input Definition                             | See Section 3.6.1                                  |  |  |
| 15h     | 1     | Horizontal Screen Size or Aspect Ratio             | Listed in cm. $\rightarrow$ Aspect Ratio Landscape |  |  |
| 16h     | 1     | Vertical Screen Size or Aspect Ratio               | Listed in cm. $\rightarrow$ Aspect Ratio Portrait  |  |  |
| 17h     | 1     | Display Transfer Characteristic (Gamma)            | Binary Factory Default Value                       |  |  |
| 18h     | 1     | Feature Support                                    | See Section 3.6.4                                  |  |  |
| 19h     | 10    | Color Characteristics:                             | See Section 3.7                                    |  |  |
| 19h     | 1     | Red/Green: Low Order Bits                          | Rx1 Rx0 Ry1 Ry0 Gx1 Gx0 Gy1Gy0                     |  |  |
| 1Ah     | 1     | Blue/White: Low Order Bits                         | Bx1 Bx0 By1 By0 Wx1 Wx0 Wy1 Wy0                    |  |  |
| 1Bh     | 1     | Red-x: High Order Bits                             | Red-x Bits $9 \rightarrow 2$                       |  |  |
| 1Ch     | 1     | Red-y: High Order Bits                             | Red-y Bits $9 \rightarrow 2$                       |  |  |
| 1Dh     | 1     | Green-x: High Order Bits                           | Green-x Bits $9 \rightarrow 2$                     |  |  |
| 1Eh     | 1     | Green-y: High Order Bits                           | Green-y Bits $9 \rightarrow 2$                     |  |  |
| 1Fh     | 1     | Blue-x: High Order Bits                            | Blue-x Bits $9 \rightarrow 2$                      |  |  |
| 20h     | 1     | Blue-y: High Order Bits                            | Blue-y Bits $9 \rightarrow 2$                      |  |  |
| 21h     | 1     | White-x: High Order Bits                           | White-x Bits $9 \rightarrow 2$                     |  |  |
| 22h     | 1     | White-y: High Order Bits                           | White-yBits $9 \rightarrow 2$                      |  |  |
| 23h     | 3     | Established Timings                                | See Section 3.8                                    |  |  |
| 23h     | 1     | Established Timings I                              |                                                    |  |  |
| 24h     | 1     | Established Timings II                             |                                                    |  |  |
| 25h     | 1     | Manufacturer's Reserved Timings                    |                                                    |  |  |
| 26h     | 16    | Standard Timings: Identification $1 \rightarrow 8$ | See Section 3.9                                    |  |  |
| 36h     | 72    | 18 Byte Data Blocks                                | See Section 3.10                                   |  |  |
| 36h     | 18    | Preferred Timing Mode                              |                                                    |  |  |
| 48h     | 18    | Detailed Timing # 2 or Display Descriptor          |                                                    |  |  |
| 5Ah     | 18    | Detailed Timing # 3 or Display Descriptor          |                                                    |  |  |
| 6Ch     | 18    | Detailed Timing # 4 or Display Descriptor          |                                                    |  |  |
|         |       | Extension Block Count N                            | Number of (optional) 128-byte EDID                 |  |  |
|         |       | If Block Maps are used then                        | EXTENSION blocks to follow – if Block              |  |  |
| 7Eh     | 1     | $00h \le N \le FEh$ and FFh is invalid.            | Maps are used then 254 is the maximum              |  |  |
|         |       | If Block Maps are not used then                    | value of 'N'. If Block Maps are not used           |  |  |
|         |       | $00h \le N \le FFh.$                               | then 255 is the maximum value of 'N'.              |  |  |
| 7Fh     | 1     | Checksum C                                         | The 1-byte sum of all 128 bytes in this            |  |  |
| / 1/ 11 | 1     | $00h \le C \le FFh$                                | EDID block shall equal zero                        |  |  |

### Table 3.1 - EDID Structure Version 1, Revision 4

**Notes** for Table 3.1:

- 1. Table 3.1 is for reference only. Refer to the appropriate sections (3.3 to 3.11) for the definitions of the various data fields within BASE EDID.
- 2. If there are two or more EXTENSION Blocks, then the number of EXTENSION Blocks listed at address **7Eh** shall also include the optional EDID Block Map EXTENSION (if present). The EDID Block Map EXTENSION is an EXTENSION Block to the BASE (Block 0) EDID structure. For example, if there are two EDID EXTENSION Data Blocks, then add the EDID Block Map EXTENSION and enter the number three at address **7Eh**.
- 3. EDID structure Version 1, Revisions 1 and 2, allowed the First 18 Byte Data Block to be used for Monitor Descriptors. Host SW using this data should be prepared to detect Monitor Descriptors also in this location even though displays conforming with later revisions (1.3 & 1.4) of EDID structure only use this space for the Preferred Timing Mode (a Detailed Timing Description). For EDID 1.4, the term Monitor Descriptors has been replaced with the term Display Descriptors.

### 3.2 Data Format Conventions

The EDID structures are designed to be compact in their representation of data fitting the most information into a limited space. To accommodate this, many data lengths have been used according to the needs of the particular data. These include fields from a single bit up to several bytes in length. In all cases, except where explicitly stated, the following conventions shall be used:

| Data length       | Convention used                                 | Example                          |
|-------------------|-------------------------------------------------|----------------------------------|
| 1 to 7 bits       | stored in stated order                          |                                  |
| 8 bits (1 byte)   | stored at stated location                       |                                  |
| 9 to 15 bits      | location of bits stated in field definition     |                                  |
| 16 bits (2 bytes) | Bytes are stored as binary (not BCD) in         | 1280  decimal = 0500 h           |
|                   | specified locations. The least significant byte | Stored as 00h in first location  |
|                   | (LSB) is stored in the first location.          | and 05h in the next location     |
| Character string  | Bytes are stored as ASCII, in the order they    | "ACED"                           |
| (More than 2      | appear in the string.                           | Stored as 41h in first location, |
| bytes)            |                                                 | 43h in the next location, 45h in |
|                   |                                                 | the next location and 44h in the |
|                   |                                                 | last location.                   |

| Table 3 | 3.2 - | Data | Format | Conventions |
|---------|-------|------|--------|-------------|
|         |       |      |        |             |

The following sections (3.3 to 3.11) provide details on each byte of the EDID 1.4 data structure.

### 3.3 Header: 8 Bytes

The header is an 8-byte pattern designed to be easily recognizable from other bytes in the data structure. The header is a required ELEMENT in EDID data structure version 1.4. Its format is shown in Table 3.3.

| Address | 8 Bytes | Value |
|---------|---------|-------|
| 00h     | 1       | 00h   |
| 01h     | 1       | FFh   |
| 02h     | 1       | FFh   |
| 03h     | 1       | FFh   |
| 04h     | 1       | FFh   |
| 05h     | 1       | FFh   |
| 06h     | 1       | FFh   |
| 07h     | 1       | 00h   |

### Table 3.3 - EDID Header Format

# 3.4 Vendor & Product ID: 10 Bytes

The vendor & product ID block is made up of several data fields used to uniquely identify the display product. The size and order of each field is shown in the Table 3.4.

| Addresses             | 10 Bytes | Vendor & Product Identification                                              | Refer To      |
|-----------------------|----------|------------------------------------------------------------------------------|---------------|
| 08h, 09h              | 2        | ID Manufacturer Name                                                         | Section 3.4.1 |
| 0Ah, 0Bh              | 2        | ID Product Code                                                              | Section 3.4.2 |
| $0Ch \rightarrow 0Fh$ | 4        | ID Serial Number                                                             | Section 3.4.3 |
| 10h, 11h              | 2        | Week of Manufacture or Model Year Flag,<br>Year of Manufacture or Model Year | Section 3.4.4 |

Table 3.4 – Vendor & Product ID Structure

## 3.4.1 ID Manufacturer Name: 2 Bytes

The ID manufacturer name field is a required ELEMENT in EDID structure 1.4. The ID manufacturer name field, shown in Table 3.5, contains a 2-byte representation of the display manufacturer's 3 character code. These codes are also called the ISA (Industry Standard Architecture) Plug and Play Device Identifier (PNPID). They are based on 5 bit compressed ASCII codes; for example: "00001=A" ... "11010=Z".

ISA Manufacturer PNPIDs are issued by Microsoft. Contact Microsoft by email, fax or website:

E-mail: <u>PnPID@Microsoft.com</u>.

Fax: 425-936-7329, Attention PNPID in Building 27.

URL: Refer to <u>http://www.microsoft.com/whdc/system/pnppwr/pnp/pnpid.mspx</u> for more information on ISA PNPID.

| Address   | Byte<br>#    | Bits at<br>Address 08h | Bits at<br>Address 09h | Description                   |
|-----------|--------------|------------------------|------------------------|-------------------------------|
|           |              | 7                      |                        | Bit 7 is reserved             |
|           |              | 0                      |                        | Set bit 7 to 0                |
| 08h       | 1            | 1                      |                        | Reserved – Do Not Use         |
|           |              | 65432                  |                        | Character #1 Location         |
|           |              | 0 4 3 2 1 0            |                        | Compressed ASCII Code - Bit # |
| 08h/09h   | 1&2          | 1076                   | 5                      | Character #2 Location         |
| 0011/0911 | $1 \alpha 2$ | 0 4 3 2 1              | 0                      | Compressed ASCII Code - Bit # |
| 09h       | 2            |                        | 4 3 2 1 0              | Character #3 Location         |
| 0911      | Z            | 0                      | 4 3 2 1 0              | Compressed ASCII Code - Bit # |

Table 3.5 - ID Manufacturer Name

### 3.4.2 ID Product Code: 2 Bytes

The ID product code field is a required ELEMENT in EDID structure version 1, revision 4. The ID product code field, shown in Table 3.6, contains a 2-byte manufacturer assigned product code. This is used to differentiate between different models from the same manufacturer, for example a model number. The 2 byte number is stored in hex with the least significant byte listed first.

| Address | 2 Bytes | Value                 | Description           |
|---------|---------|-----------------------|-----------------------|
| 0Ah     | 1       | $00h \rightarrow FFh$ | ID Product Code - LSB |
| 0Bh     | 1       | $00h \rightarrow FFh$ | ID Product Code - MSB |

Table 3.6 – ID Product Code

### 3.4.3 ID Serial Number: 4 Bytes

The ID serial number is a 32-bit serial number used to differentiate between individual instances of the same display model. Its use is optional. When used, the bit order for this field shall follow that shown in Table 3.7. The four bytes of the serial number are listed least significant byte (LSB) first. The range of this serial number is 0 to 4,294,967,295. This serial number is a number only --- it shall not represent ASCII codes. If this field is not used, then enter "00h, 00h, 00h, 00h".

| Address | Byte<br># | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | Description      |
|---------|-----------|-------|-------|-------|-------|-------|-------|-------|-------|------------------|
| 0Ch     | 1         | (7    | 6     | 5     | 4     | 3     | 2     | 1     | 0)    |                  |
| 0Dh     | 2         | (15   | 14    | 13    | 12    | 11    | 10    | 9     | 8)    | ID Carial Number |
| 0Eh     | 3         | (23   | 22    | 21    | 20    | 19    | 18    | 17    | 16)   | ID Serial Number |
| 0Fh     | 4         | (31   | 30    | 29    | 28    | 27    | 26    | 25    | 24)   |                  |

 Table 3.7 - ID Serial Number

**Note** for Table 3.7: The EDID structure version 1, revision 1 (and newer) offers a way to represent the serial number of the monitor as an ASCII string in a separate descriptor block. Refer to section 3.10.3 Display Descriptors for an alternative method of defining a serial number.

### 3.4.4 Week and Year of Manufacture or Model Year: 2 Bytes

There are two definitions for this data field: Week & Year of Manufacture or Model Year.

The week of manufacture field is optional, but the year of manufacture (or model year) field is required in EDID structure 1.4. The week of manufacture field (if used) is set to a value in the range of 1-54 weeks. If the week of manufacture field is not used, the value shall be set to '00h'. The year of manufacture field is used to represent the year of the display's manufacture or the model year. If the year of manufacture field is used to represent the model year, then set the week of manufacture (at address **10h**) to 'FFh'. Then enter the model year (at address **11h**). The value that is stored is an offset from the year 1990 as derived from the following equation:

Stored Value = (Year of Manufacture {or Model Year} - 1990)

| Address | 2 Bytes               | Value                 | Description                                                          |
|---------|-----------------------|-----------------------|----------------------------------------------------------------------|
|         |                       | 00h                   | Week of Manufacture is not specified                                 |
| 10h     | 1                     | $01h \rightarrow 36h$ | Week of Manufacture is specified (range is $1 \rightarrow 54$ weeks) |
| 1011    | 1                     | $37h \rightarrow FEh$ | Reserved: Do not use                                                 |
|         |                       | FFh                   | Model Year Flag Model Year is specified at address 11h               |
|         | $00h \rightarrow 0Fh$ |                       | Reserved: Do not use                                                 |
| 11h     | 1 <b>h</b> 1          | $10h \rightarrow FFh$ | If Byte <b>10h</b> = FFh then Byte <b>11h</b> contains Model Year    |
|         |                       | $10h \rightarrow FFh$ | If Byte $10h \neq$ FFh then Byte $11h$ contains Year of Manufacture  |

Table 3.8 – Week & Year of Manufacture or Model Year

Example 1: For a display manufactured in the first week of 2006, the values stored in these fields are 1 decimal (01h) at address **10h** and 16 decimal (10h) at address **11h**.

Example 2: Model year (2006) is indicated by storing FFh and 10h at addresses 10h and 11h, respectively.

# 3.5 EDID Structure Version & Revision: 2 Bytes

The EDID structure version number and revision number fields are required ELEMENTS in EDID structure version 1, revision 4. Version 1, revision 4 shall be stored here. These values define the EDID data structure being used. Display products compliant with this standard shall have Version Number = 1 and Revision Number = 4.

| Address      | 2 Bytes | Value                                      | Description                      |
|--------------|---------|--------------------------------------------|----------------------------------|
| 124          | 1       | 01h                                        | EDID Structure Version Number 1  |
| 12h          | 1       | 00h, 02h $\rightarrow$ FFh                 | Reserved: Do not use             |
| <b>13h</b> 1 |         | 04h                                        | EDID Structure Revision Number 4 |
| 1511         | 1       | $00h \rightarrow 03h, 05h \rightarrow FFh$ | Reserved: Do not use             |

Table 3.9 - EDID Structure Version and Revision Numbers

Note: Values < '04h' in address 13h represent an earlier (and are superseded) revision number.

### 3.6 Basic Display Parameters and Features: 5 Bytes

The basic display parameters and features fields are required ELEMENTS in EDID data structure version 1, revision 4. The contents of the Basic Display Parameters and Features data fields are listed in Table 3.10.

| Address  | 5 Bytes | Basic Display Parameters & Features                                                                   | <b>Refer To</b> |
|----------|---------|-------------------------------------------------------------------------------------------------------|-----------------|
| 14h      | 1       | Video Input Definition                                                                                | Section 3.6.1   |
| 15h, 16h | 2       | Horizontal Screen Size or Aspect Ratio 'Landscape'<br>Vertical Screen Size or Aspect Ratio 'Portrait' | Section 3.6.2   |
| 17h      | 1       | Display Transfer Characteristic (Gamma)                                                               | Section 3.6.3   |
| 18h      | 1       | Feature Support                                                                                       | Section 3.6.4   |

 Table 3.10 - Basic Display Parameters and Features

### 3.6.1 Video Input Definition: 1 Byte

The video input definition field is a required ELEMENT in EDID data structure version 1, revision 4. The host (source) shall use the information contained within the video input definition field to configure the video output of the host (source). The format of this one-byte field is described below in Table 3.11

| Address | Bit Definitions |   |               |               |               | Description   |                                                              |                        |
|---------|-----------------|---|---------------|---------------|---------------|---------------|--------------------------------------------------------------|------------------------|
|         | 7               | _ | _             | _             | _             | _             | Video Signal Interface:                                      | Bit 7                  |
|         | 0               | _ | _             | _             | _             |               | Input is an Analog Video Signal Interface:                   |                        |
|         | 7 6 5           | _ | _             | _             |               | _             | Signal Level Standard: Video : Sync : Total                  | Bits 6 & 5             |
|         | 0 0 0           | _ | _             | _             | _             | I             | 0.700 : 0.300 : 1.000 V p-p                                  |                        |
|         | 0 0 1           | _ | _             | _             | _             | _             | 0.714 : 0.286 : 1.000 V p-p                                  |                        |
|         | 0 1 0           | _ | _             | _             | _             | _             | 1.000 : 0.400 : 1.400 V p-p                                  |                        |
|         | 0 1 1           | _ | _             | _             | _             | _             | 0.700 : 0.000 : 0.700 V p-p                                  |                        |
|         | 7               | 4 | _             | _             | _             | _             | Video Setup:                                                 | Bit 4                  |
|         | 0               | 0 | _             | _             | _             | _             | Video Setup: Blank Level = Black Level                       |                        |
| 14h     | 0               | 1 | _             | _             |               |               | Video Setup: Blank-to-Black setup or pedestal                | (see Note 1)           |
| 1411    | 7               | _ | 3             | 2             | 1             | _             | Synchronization Types:                                       | Bits $3 \rightarrow 1$ |
|         | 0               | _ | 0             | _             | _             | _             | Separate Sync H & V Signals are not supported                |                        |
|         | 0               | _ | 1             | _             | _             | _             | Separate Sync H & V Signals are supported                    |                        |
|         | 0               | _ | _             | 0             | _             | _             | Composite Sync Signal on Horizontal is not supp              | ported                 |
|         | 0               | _ | _             | 1             | _             | _             | Composite Sync Signal on Horizontal is supported             |                        |
|         | 0               | _ | _             | _             | 0             | _             | Composite Sync Signal on Green Video is not su               | pported                |
|         | 0               | _ |               |               | 1             |               | Composite Sync Signal on Green Video is suppo                |                        |
|         | 7               | _ | _             | _             | - ,           | 0             | Serrations:                                                  | Bit 0                  |
|         | 0               | _ | _             | _             | _             | 0             | Serration on the Vertical Sync is not supported              |                        |
|         | 0               |   | _             | _             | _             | 1             | Serration on the Vertical Sync is supported                  | (see Note 2)           |
|         | 7               | _ | _             | _             | _             | _             | Video Signal Interface:                                      | Bit 7                  |
|         | 1               | _ | _             | _             | _             | _             | Input is a Digital Video Signal Interface:                   | (see Note 3)           |
|         | 7 6 5           | 4 |               |               | _             | _             | Color Bit Depth:                                             | Bits $6 \rightarrow 4$ |
|         | 1 0 0           | 0 | _             | _             | _             | _             | Color Bit Depth is undefined                                 |                        |
|         | 1 0 0           | 1 | _             | _             | _             | _             | 6 Bits per Primary Color                                     |                        |
|         | 1 0 1           | 0 | _             | _             | _             | _             | 8 Bits per Primary Color                                     |                        |
|         | 1 0 1           | 1 | _             | _             | _             | _             | 10 Bits per Primary Color                                    |                        |
|         | 1 1 0           | 0 | _             | _             | _             | _             | 12 Bits per Primary Color                                    |                        |
|         | 1 1 0           | 1 | _             | _             | _             | _             | 14 Bits per Primary Color                                    |                        |
| 14h     | 1 1 1           | 0 | _             | _             | _             | _             | 16 Bits per Primary Color                                    |                        |
|         | 1 1 1           | 1 | _             | _             |               | _             | Reserved (Do Not Use)                                        |                        |
|         | 7               | _ | 3             | 2             | 1             | 0             | Digital Video Interface Standard Supported:                  | Bits $3 \rightarrow 0$ |
|         | 1               | _ | 0             | 0             | 0             | 0             | Digital Interface is not defined                             | (see Note 4)           |
|         | 1               | _ | 0             | 0             | 0             | 1             | DVI is supported                                             |                        |
|         | 1               | _ | 0             | 0             | 1             | 0             | HDMI-a is supported                                          |                        |
|         | 1               | _ | 0             | 0             | 1             | 1             | HDMI-b is supported                                          |                        |
|         | 1               | _ | 0             | 1             | 0             | 0             | MDDI is supported                                            |                        |
|         | 1               | _ | 0             | 1             | 0             | 1             | DisplayPort is supported                                     |                        |
|         | 1               | _ | $\rightarrow$ | $\rightarrow$ | $\rightarrow$ | $\rightarrow$ | All remaining values for Bits $3 \rightarrow 0$ are Reserved | d: Do Not Use          |

Table 3.11 - Video Input Definition

Notes to Table 3.11:

- 1. Refer to the appropriate analog video signal level standard for the correct blank-to-black setup level or pedestal amplitude.
- 2. Serrations of the Vertical Sync Pulse are required when composite sync or sync-on-green video is used.
- 3. For EDID 1.4, if bit 7 (at address **14h**) is set to '1', then bits 4 & 3 (at address **18h**) define the Supported Color Encoding Format/s (refer to Table 3.14).
- 4. For more information, refer to the appropriate Digital Video Interface Standard.
- <sup>5</sup> If a display supports more than one synchronization type, then separate sync H & V signals have the highest priority and composite sync signals on horizontal have the lowest priority.

### 3.6.2 Horizontal and Vertical Screen Size or Aspect Ratio: 2 Bytes

The horizontal and vertical screen size or aspect ratio parameter fields are required ELEMENTS in EDID structure version 1, revision 4 for all display products except for certain types of projectors. The horizontal and vertical screen size parameters provide information on the screen dimensions of the display device, rounded to the nearest centimeter (cm). These 2 bytes may also be defined as aspect ratio in the 'Landscape' or 'Portrait' screen orientation mode - see Table 3.12. Aspect ratios are rounded to the hundredth decimal place.

The host (source) is expected to use this data to get a rough idea of the image size to generate properly scaled text and icons.

Use the following equations when determining the stored value (in Table 3.12) for the aspect ratio:

Landscape Orientation:

Given the Stored Value, the Aspect Ratio may be calculated by using the following equation:

Aspect Ratio = (Stored Value + 99)  $\div$  100

Given the Aspect Ratio, the Stored Value may be calculated by using the following equation:

Stored Value =  $(Aspect Ratio \times 100) - 99$ 

Portrait Orientation:

Given the Stored Value, the Aspect Ratio may be calculated by using the following equation:

Aspect Ratio =  $100 \div (\text{Stored Value} + 99)$ 

Given the Aspect Ratio, the Stored Value may be calculated by using the following equation:

Stored Value =  $(100 \div \text{Aspect Ratio}) - 99$ 

| Address  | 2 Bytes | Value                                       | Description                                                                            |
|----------|---------|---------------------------------------------|----------------------------------------------------------------------------------------|
|          |         | $01h \rightarrow FFh$                       | If byte $16h \neq 00h$ then byte $15h =$ Horizontal Screen Size in cm.                 |
|          |         |                                             | (Range is 1 cm $\rightarrow$ 255 cm)                                                   |
| 15h      | 1       | $01h \rightarrow FFh$                       | If byte <b>16h</b> = 00h then byte <b>15h</b> = Aspect Ratio (Landscape)               |
|          |         | 0111 → FFII                                 | (Range is $1: 1 \text{ AR} \rightarrow 3.54: 1 \text{ AR}$ )                           |
|          |         | 00h                                         | If byte <b>15h</b> = 00h then byte <b>16h</b> = Aspect Ratio (Portrait)                |
|          |         | $01h \rightarrow FFh$ $01h \rightarrow FFh$ | If byte $15h \neq 00h$ then byte $16h$ = Vertical Screen Size in cm.                   |
|          |         |                                             | (Range is 1 cm $\rightarrow$ 255 cm)                                                   |
| 16h      | 1       |                                             | If byte <b>15h</b> = 00h then byte <b>16h</b> = Aspect Ratio (Portrait)                |
|          |         | 0111 → FFII                                 | (Range is $0.28 : 1 \text{ AR} \rightarrow 0.99 : 1 \text{ AR}$ )                      |
|          |         | 00h                                         | If byte <b>16h</b> = 00h then byte <b>15h</b> = Aspect Ratio (Landscape)               |
| 15h, 16h | 2       | 00h, 00h                                    | If both bytes <b>15h</b> and <b>16h</b> = 00h then the screen size or aspect ratio are |
| 151, 101 | 2       | 0011, 0011                                  | unknown or undefined.                                                                  |

Notes on Table 3.12:

- 1. The screen size bytes at addresses **15h** and **16h** shall be set to '00h', when the display manufacturer does not, or cannot specify the display's screen size. For example: A front projection display (with zoom feature) for example, may have an image of indeterminate size and the screen size bytes shall be set to 00h, 00h.
- 2. For displays that pivot, the screen size is measured in the landscape mode (major axis is on the horizontal, minor axis is on the vertical). This applies to displays that have the following aspect ratios: 4 : 3 AR, 5 : 4 AR, 15 : 9 AR, 16 : 9 AR and 16 : 10 AR.

- 3. Examples:
  - 3-1. Landscape Orientation:

For an aspect ratio of 16 by 9, the stored value at address **15h** is 79 (4Fh). For an aspect ratio of 16 by 10, the stored value at address **15h** is 61 (3Dh). For an aspect ratio of 4 by 3, the stored value at address **15h** is 34 (22h). For an aspect ratio of 5 by 4, the stored value at address **15h** is 26 (1Ah).

### 3-2. Portrait Orientation:

For an aspect ratio of 9 by 16, the stored value at address **16h** is 79 (4Fh). For an aspect ratio of 10 by 16, the stored value at address **16h** is 61 (3Dh). For an aspect ratio of 3 by 4, the stored value at address **16h** is 34 (22h). For an aspect ratio of 4 by 5, the stored value at address **16h** is 26 (1Ah).

# 3.6.3 Display Transfer Characteristics (GAMMA): 1 Byte

The display transfer characteristic, referred to as GAMMA, is a required ELEMENT in EDID data structure version 1, revision 4. It shall be stored in a 1-byte field capable of representing GAMMA values in the range of 1.00 to 3.54. The integer value stored shall be determined by the formula:

| Address | 1 Byte | Value                                   | Description                                                            |
|---------|--------|-----------------------------------------|------------------------------------------------------------------------|
|         |        | $01h \rightarrow FEh$                   | Display Transfer Characteristic (GAMMA)                                |
| 17h     | 1      | $0111 \rightarrow 1^{\circ}L^{\circ}11$ | (Range is from $1.00 \rightarrow 3.54$ )                               |
| 1/11    | 1      | FFh                                     | If byte $17h = FFh$ , then the GAMMA value is not defined here and the |
|         |        |                                         | GAMMA data shall be stored in an extension block (e.g., DI-EXT).       |

Notes for Table 3.13:

- 1. The stored GAMMA is the factory default value as defined by the display manufacturer.
- 2. Example: For a GAMMA value of 2.2, the stored value at address 17h is 120 ('78h').

# **3.6.4 Feature Support: 1 Byte**

The feature support byte is a required ELEMENT in EDID structure version 1, revision 4. The feature support field shall be used to indicate support for various display features. The format of this 1-byte field is shown in Table 3.14.

| Address | <b>Bits Definitions</b> |     | tions            | Description                                                              |                        |
|---------|-------------------------|-----|------------------|--------------------------------------------------------------------------|------------------------|
|         | 765                     |     |                  | Display Power Management: (See Note 1)                                   | Bits $7 \rightarrow 5$ |
|         | 1                       |     |                  | Standby Mode is supported.                                               | Bit 7                  |
|         | 0                       |     |                  | Standby Mode is not supported.                                           | Bit 7                  |
|         | _ 1 _                   |     |                  | Suspend Mode is supported.                                               | Bit 6                  |
|         | 0                       |     |                  | Suspend Mode is not supported.                                           | Bit 6                  |
|         | 1                       |     |                  | Active Off = Very Low Power is supported.                                | Bit 5                  |
|         | 0                       |     |                  | Active Off = Very Low Power is not supported.                            | Bit 5                  |
|         |                         | 4 2 |                  | If bit 7 at address $14h = 0^{\circ}$ then bits 4 & 3 at address $18h$ d | efines the             |
|         |                         | 4 3 |                  | Display Color Type: (See Note 2)                                         | Bits 4 & 3             |
|         |                         | 0 0 |                  | Monochrome or Grayscale display                                          |                        |
|         |                         | 0 1 |                  | RGB color display                                                        |                        |
|         | 1 0<br>1 1              |     |                  | Non-RGB color display                                                    |                        |
|         |                         |     |                  | Display Color Type is Undefined                                          |                        |
| 18h     |                         |     |                  | If bit 7 at address $14h = 1$ then bits 4 & 3 at address $18h d$         | efines the             |
| 1011    |                         | 43  |                  | Supported Color Encoding Format/s: (See Note 2)                          | Bits 4 & 3             |
|         |                         | 0 0 |                  | RGB 4:4:4                                                                |                        |
|         |                         | 0 1 |                  | RGB 4:4:4 & YCrCb 4:4:4                                                  |                        |
|         |                         | 1 0 |                  | RGB 4:4:4 & YCrCb 4:2:2                                                  |                        |
|         |                         | 1 1 |                  | RGB 4:4:4 & YCrCb 4:4:4 & YCrCb 4:2:2                                    |                        |
|         |                         |     | 2 1 0            | Other Feature Support Flags:                                             | Bits $2 \rightarrow 0$ |
|         |                         |     | 1                | sRGB Standard is the default color space. (See Note 3)                   | Bit 2                  |
|         |                         |     | 0                | sRGB Standard is not the default color space.                            | Bit 2                  |
|         |                         |     | 1                | Preferred Timing Mode includes the native pixel format and               | preferred              |
|         |                         |     | - <sup>1</sup> - | refresh rate of the display device. (See Note 4)                         | Bit 1                  |
|         | 0                       |     |                  | Preferred Timing Mode does not include the native pixel for              |                        |
|         |                         |     |                  | preferred refresh rate of the display device.                            | Bit 1                  |
|         |                         |     | 1                | Display is continuous frequency. (See Note 5)                            | Bit 0                  |
|         |                         |     | 0                | Display is non-continuous frequency (multi-mode).                        | Bit 0                  |

 Table 3.14 - Feature Support

Notes to Table 3.14:

1. DPM vs. DPMS: Note that VESA no longer supports the Display Power Management Signaling (DPMS) Standard. DPMS has been replaced by the Display Power Management (DPM) Standard. DPM defines two power modes: On and OFF. DPMS defines four power states: On, Standby, Suspend and Off. For legacy support, the following table defines the relationships (mappings) between the DPM and DPMS states.

| DPMS State | DPM State | Industry Definition              |
|------------|-----------|----------------------------------|
| ON         | ON        | ON                               |
| Standby    | OFF       | Sleep                            |
| Suspend    | OFF       | Sleep                            |
| Active OFF | OFF       | Off, deep sleep or standby power |

Table 3.15 - DPMS vs. DPM --- State Mappings

For DPM compliant displays, bit 5 at address 18h shall be set to 1 and bits 7 & 6 shall be set to 0. For DPMS compliant displays, bits 7, 6 and/or 5 shall be set to 1 indicating the supported power down modes.

2. Display Color Type vs. Supported Color Encoding Format(s): Refer to Table 3.11 for the definition of bit 7 at address **14h**.

- 3. Standard Default Color Space sRGB: If this bit is set to 1, the display uses the sRGB standard default color space as its primary color space. If a display is sRGB compliant, then the color information in section 3.7 shall match the sRGB standard values.
- 4. Preferred Timing Mode: The display's preferred timing mode shall be listed in the first 18 byte data block (starting at address 36h. Refer to section 3.10). This is a requirement for EDID data structure version 1, revision 3 and newer. For EDID version 1, revision 3, bit 1 (at address 18h) shall be set to 1 (0 is invalid). For EDID version 1, revision 4, setting bit 1 (at address 18h) to 1 indicates that the preferred timing mode includes the native pixel format and the preferred refresh rate of the display device (for example, an LCD module). A 0 at bit 1 (address 18h) indicates the native pixel format and preferred refresh rate of the display device are not included in the preferred timing mode.
- 5. Continuous Frequency vs. Non-Continuous Frequency: For EDID version 1, revision 3, bit 0 (at address 18h) indicated support for or no support for GTF (using the default GTF parameter values). For EDID version 1, revision 4, bit 0 (at address 18h) has been redefined to indicate Continuous Frequency Display (set bit 0 to 1) or Non-Continuous Frequency (Multi-Mode) Display (set bit 0 to 0). If bit 0 is set to 1, then the display will accept GTF or CVT generated timings (from a source) that are within the display's range limits. Note that the displayed image may not be properly sized or centered. Use of the continuous frequency flag (bit 0 at address 18h) is only required if the display manufacturer wants to enable the display to be used in a continuous frequency bit is set to '1', then the Display Range Limits Descriptor (refer to section 3.10.3.3) is required to be included in BASE EDID. If bit 0 is set to 0, then the display is non-continuous frequency (multi-mode) and is only specified to accept the video timing formats that are listed in BASE EDID and certain EXTENSION Blocks. If the display supports GTF Secondary Curve refer to Table 3.27 in section 3.10.3.3.1. If the display is compliant with the CVT Standard, refer to table 3.28 in section 3.10.3.3.2.

# 3.7 Display x, y Chromaticity Coordinates: 10 Bytes

The display x, y chromaticity coordinates are required ELEMENTS in EDID data structure version 1, revision 4. These bytes provide chromaticity and white point information. The white point value shall be the default white point (the white point set at initial power on or after resetting the display to its default settings). The default white point is defined by the display manufacturer. The data shall be stored (as 10 bit numbers) in the order shown in Table 3.16. Provision for multiple white points can be made in one of the display descriptors - see Section 3.10.3.

| Address | 10 Bytes | Color Characteristic      | Byte Definitions            |                        |
|---------|----------|---------------------------|-----------------------------|------------------------|
| 19h     | 1        | Red / Green – bits 1 & 0  | Rx1 Rx0 Ry1 Ry0 Gx1 Gx0 Gy1 | Gy0                    |
| 1Ah     | 1        | Blue / White – bits 1 & 0 | Bx1 Bx0 By1 By0 Wx1 Wx0 Wy  | 1 Wy0                  |
| 1Bh     | 1        | Red_x                     | Red x                       | bits $9 \rightarrow 2$ |
| 1Ch     | 1        | Red_y                     | Redy                        | bits $9 \rightarrow 2$ |
| 1Dh     | 1        | Green_x                   | Green x                     | bits $9 \rightarrow 2$ |
| 1Eh     | 1        | Green_y                   | Greeny                      | bits $9 \rightarrow 2$ |
| 1Fh     | 1        | Blue_x                    | Blue x                      | bits $9 \rightarrow 2$ |
| 20h     | 1        | Blue_y                    | Blue y                      | bits $9 \rightarrow 2$ |
| 21h     | 1        | White_x                   | White x                     | bits $9 \rightarrow 2$ |
| 22h     | 1        | White_y                   | White_y                     | bits $9 \rightarrow 2$ |

Table 3.16 - Chromaticity and Default White Point

Notes to Table 3.16:

1. Stored data in Table 3.16 is based on the CIE 1931 (2°) Chromaticity Chart. Definitions of the CIE Chromaticity Chart can be found in CIE publication 15.2 (Colorimetry Space).

- 2. The chromaticity and white point values shall be expressed as fractional numbers, accurate to the thousandth place.
- 3. Each number shall be represented by a binary fraction, which is 10 bits in length. In this fraction a value of 1 for the bit immediately right of the decimal point (bit 9) represents 2 raised to the -1 power. A value of 1 in the right most bit (bit 0) represents a value of 2 raised to the -10 power.
- 4. The high order bits  $(9 \rightarrow 2)$  shall be stored as a single byte. The low order bits  $(1 \rightarrow 0)$  are paired with other low order bits to form a byte. With this representation, all values should be accurate to +/- 0.0005 of the specified value.
- 5. Monochrome displays shall indicate the appropriate white point x, y coordinates regardless of the actual color and shall set the red, green and blue x, y coordinates to '00h'.
- 6. Examples are shown in Table 3.17.

| Actual Value | <b>Binary value</b> | <b>Converted Back to Decimal</b> |
|--------------|---------------------|----------------------------------|
| 0.610        | 1001110001          | 0.6103516                        |
| 0.307        | 0100111010          | 0.3066406                        |
| 0.150        | 0010011010          | 0.1503906                        |

Table 3.17 - Ten bit Binary Fraction Representation

# 3.8 Established Timings I & II: 3 bytes

The indication of support for established timings is optional in EDID data structure version 1, revision 4, except for displays that are VESA Plug & Play compliant. Plug & Play compliant displays shall show support for the BASE VIDEO MODE ( $640 \times 480$  @ 60Hz) and shall indicate support in the Established Timing I data field. The established timing data field is a list of one-bit flags, which may be used to indicate support for established VESA and other common timings in a very compact form. Other standardized timings may be described by the Standard Timings data field defined in Section 3.9. Any timing can be described using the Detailed Timings data field defined in Section 3.10.

Bits  $6 \rightarrow 0$  (inclusive) of the byte at address **25h** may be used to define manufacturer's proprietary timings. These bits may be used if a manufacturer wants to identify such timings through the use of one-bit flags. VESA takes no responsibility for coordinating or documenting the use of these bits by any manufacturer(s).

In Table 3.18, a bit set to "1" shall indicate support for that timing.

Established Timings I & II indicate Factory Supported Modes of VESA DMT as well as other industry de-facto timings that predate EDID. The one-bit flags (either set or not set) of the Established Timing data field shall not be used to determine maximum format supported, maximum refresh supported, or any other timing parameter of the display. Any one-bit flag set to 1 in the Established Timing section shall indicate that this timing mode is a Factory Supported Mode. It shall not be used to determine the range limits of the display.

# *Factory Supported Modes* are defined as video timing modes which result in displayed images that are properly sized and centered (on the display's screen) as the display is delivered from factory.

EDID may not indicate all Factory Supported Modes. Table 3.18 defines the Established Timings I & II.

| Address | 3 Bytes | Bit # | Description                                 | Source           |
|---------|---------|-------|---------------------------------------------|------------------|
| 23h     | 1       |       | Established Timing I                        |                  |
|         |         | 7     | 720 x 400 @ 70Hz                            | IBM, VGA         |
|         |         | 6     | 720 x 400 @ 88Hz                            | IBM, XGA2        |
|         |         | 5     | 640 x 480 @ 60Hz                            | IBM, VGA         |
|         |         | 4     | 640 x 480 @ 67Hz                            | Apple, Mac II    |
|         |         | 3     | 640 x 480 @ 72Hz                            | VESA             |
|         |         | 2     | 640 x 480 @ 75Hz                            | VESA             |
|         |         | 1     | 800 x 600 @ 56Hz                            | VESA             |
|         |         | 0     | 800 x 600 @ 60Hz                            | VESA             |
| 24h     | 1       |       | Established Timing II                       |                  |
|         |         | 7     | 800 x 600 @ 72Hz                            | VESA             |
|         |         | 6     | 800 x 600 @ 75Hz                            | VESA             |
|         |         | 5     | 832 x 624 @ 75Hz                            | Apple, Mac II    |
|         |         | 4     | 1024 x 768 @ 87Hz(I)                        | IBM - Interlaced |
|         |         | 3     | 1024 x 768 @ 60Hz                           | VESA             |
|         |         | 2     | 1024 x 768 @ 70Hz                           | VESA             |
|         |         | 1     | 1024 x 768 @ 75Hz                           | VESA             |
|         |         | 0     | 1280 x 1024 @ 75Hz                          | VESA             |
| 25h     | 1       |       | Manufacturer's Timings                      |                  |
|         |         | 7     | 1152 x 870 @ 75Hz                           | Apple, Mac II    |
|         |         | 6-0   | Reserved for Manufacturer Specified Timings |                  |

Table 3.18 - Established Timings I & II

# 3.9 Standard Timings: 16 Bytes

The use of standard timings is optional in EDID data structure version 1, revision 4. These 16 bytes provide identification for up to eight additional timings, each identified by a unique 2-byte code derived from the horizontal active pixel count, the image aspect ratio and field refresh rate as described in Table 3.19. The standard timing 2 byte codes for most VESA DMT definitions are listed in the latest revision of the DMT document. This scheme may also be used in display products intended to be used exclusively with proprietary systems where the host already has the complete timing information. Additional standard timings (2 byte codes) may be listed by using one of the alternate definitions of the Display Descriptors permitted in EDID Structure Version 1, Revision 1 and higher - see Section 3.10.3.

- Unused Standard Timing data fields shall be set to 01h, 01h.
- All Standard Timing identifiers are defined to be "Square Pixel" (1 : 1 pixel aspect ratio).

The Standard Timing data fields shall be used to identify Factory Supported Modes that fall into one or both of two categories:

- VESA Display Monitor Timings that are listed in the VESA and Industry Standards and Guidelines for Computer Display Monitor Timing (DMT) document.
- Display Monitor Timings not included in the DMT document and calculated using the CVT or GTF formula. Refer to Appendix B for an explanation of the relationship between standard timings, Generalized Timing Formula (GTF) and Coordinated Video Timing (CVT).

A 2-byte timing code identifies each Display Monitor Timing definition. If a timing code listed in EDID corresponds to an issued VESA Display Monitor Timing, factory adjustment data shall be stored (preset) in the display.

EDID may not indicate all Factory Supported Modes. Standard Timings definitions are shown in Table 3.19.

| Table 3.19 - Stan | dard Timings |
|-------------------|--------------|
|-------------------|--------------|

| Address     | 16<br>Bytes | Value                                                                                          | Description                                                                                                                         |                        |  |  |
|-------------|-------------|------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|------------------------|--|--|
|             | 2           |                                                                                                | Standard Timing 1:                                                                                                                  | Standard Timing 1:     |  |  |
| 26h         | 1           | $01h \rightarrow FFh$                                                                          | Value Stored (in hex) =<br>(Horizontal addressable pixels $\div$ 8) – 31<br>Range: 256 pixels $\rightarrow$ 2288 pixels, in increme | nts of 8 pixels        |  |  |
|             |             | 00h                                                                                            | Reserved: Do not use.                                                                                                               |                        |  |  |
|             |             | Bit Definitions                                                                                | Description                                                                                                                         | 1: 7.0 (               |  |  |
|             |             |                                                                                                | Image Aspect Ratio:                                                                                                                 | bits 7 & 6             |  |  |
|             |             |                                                                                                | 16 : 10 AR<br>4 : 3 AR                                                                                                              |                        |  |  |
| 271         | -           |                                                                                                | 4:5 AR<br>5:4 AR                                                                                                                    |                        |  |  |
| 27h         | 1           |                                                                                                | 5.4 AR<br>16:9 AR                                                                                                                   |                        |  |  |
|             |             | 543210                                                                                         | Field Refresh Rate:                                                                                                                 | bits $5 \rightarrow 0$ |  |  |
|             |             | 345210                                                                                         | Value Stored (in binary) = Field Refresh Rate                                                                                       |                        |  |  |
|             |             | nnnnn                                                                                          | Range: 60 Hz $\rightarrow$ 123Hz                                                                                                    | 2(1112) = 00           |  |  |
| 28h,<br>29h | 2           | <b>Standard Timing 2:</b><br>Stored values use the Standard Timing 1 byte and bit definitions. |                                                                                                                                     |                        |  |  |
| 2Ah,<br>2Bh | 2           | Standard Timing 3:<br>Stored values use the Standard Timing 1 byte and bit definitions.        |                                                                                                                                     |                        |  |  |
| 2Ch,<br>2Dh | 2           | Standard Timing 4:<br>Stored values use the Standard Timing 1 byte and bit definitions.        |                                                                                                                                     |                        |  |  |
| 2Eh,<br>2Fh | 2           | <b>Standard Timing 5:</b><br>Stored values use the Standard Timing 1 byte and bit definitions. |                                                                                                                                     |                        |  |  |
| 30h,<br>31h | 2           | <b>Standard Timing 6:</b><br>Stored values use the Standard Timing 1 byte and bit definitions. |                                                                                                                                     |                        |  |  |
| 32h,<br>33h | 2           | <b>Standard Timing 7:</b><br>Stored values use the Standard Timing 1 byte and bit definitions. |                                                                                                                                     |                        |  |  |
| 34h,<br>35h | 2           | Standard Timing 8:<br>Stored values use the Standard Timing 1 byte and bit definitions.        |                                                                                                                                     |                        |  |  |

Notes for Table 3.19:

- 1. The vertical addressable line count may be calculated from the aspect ratio and the horizontal addressable pixel count given in the first byte.
- 2. EDID structures prior to version 1, revision 3 defined the bit (bits 7 & 6 at address **27h**) combination of 0 0 to indicate a 1 : 1 aspect ratio.
- 3. Standard Timings shall not be used to define video timing modes with horizontal addressable pixel counts greater than 2288 pixels. In this case, the video timing mode shall be defined using the Detailed Timing Definition (Section 3.10.2) or the CVT Definition (Section 3.10.3.8).
- 4. Standard Timings shall not be used to define video timing modes with vertical field refresh rates greater than 123 Hz. In this case, the video timing mode shall be defined using the Detailed Timing Definition (refer to Section 3.10.2) or the CVT Definition (Section 3.10.3.8).

# 3.10 18 Byte Descriptors - 72 Bytes

**NOTE**: Previous versions of the VESA E-EDID Standard refer to the 18 Byte Descriptors as the Detailed Timing Blocks.

The 72 bytes in this section are divided into four data fields. Each of the four data fields are 18 bytes in length. These 18 byte data fields shall contain either detailed timing data as described in Section 3.10.2 or other types of data as described in Section 3.10.3. The addresses and the contents of the four 18 byte descriptors are shown in Table 3.20.

| Addresses                                                    | Field Name                | Description                                                                          |  |
|--------------------------------------------------------------|---------------------------|--------------------------------------------------------------------------------------|--|
| 36h → 47h                                                    | First 18 Byte Descriptor  | Preferred Timing Mode is a requirement.                                              |  |
| 48h → 59h                                                    | Second 18 Byte Descriptor | 2 <sup>nd</sup> Detailed Timing Descriptor or the 1 <sup>st</sup> Display Descriptor |  |
| <b>5Ah</b> $\rightarrow$ <b>6Bh</b> Third 18 Byte Descriptor |                           | 3 <sup>rd</sup> Detailed Timing Descriptor or the 2 <sup>nd</sup> Display Descriptor |  |
| $6Ch \rightarrow 7Dh$                                        | Fourth 18 Byte Descriptor | 4 <sup>th</sup> Detailed Timing Descriptor or the 3 <sup>rd</sup> Display Descriptor |  |

Table 3.20 - 18 Byte Descriptors

Notes for Table 3.20:

Use of these 18 Byte Data Descriptors shall meet the following requirements:

- 1. Each of the four data blocks shall contain a detailed timing descriptor, a display descriptor or a dummy descriptor (Tag 10h) using definitions described in Sections 3.10.2 and 3.10.3. Use of a data fill pattern is not permitted the Dummy Descriptor (Tag 10h) is the only exception.
- 2. Detailed timing mode descriptors shall represent a supported video timing mode of the display.
- 3. The 18 byte descriptors shall be ordered such that all detailed video timing descriptors precede other types of display descriptor fields.
- 4. The first 18 byte descriptor field shall be used to indicate the display's preferred timing mode. This is described in Section 3.10.1. The display's preferred timing mode is a required ELEMENT in EDID data structure version 1, revision 4.
- 5. A Display Range Limits Descriptor (which was required in EDID data structure version 1, revision 3) is optional (but recommended) in EDID data structure version 1, revision 4. Continuous frequency displays (which may support GTF or CVT) are required to include the Display Range Limit Descriptor.
- A Display Product Name Descriptor (required in EDID data structure version 1, revision 3) is optional (but recommended) in EDID data structure version 1, revision 4. Examples:

Example A: Preferred Detailed Timing, Detailed Timing 2, Monitor Range Limits, Monitor Name.

Example B: Preferred Detailed Timing, Monitor Range Limits, Monitor Name, Monitor Serial Number.

Example C: Preferred Detailed Timing, Detailed Timing 2, Detailed Timing 3, Detailed Timing 4.

- **Note** on EDID Data Structure Version 1, Revision 3: Items 4, 5 and 6 above were permitted but not required prior to EDID data structure version 1 revision 3. Hosts may encounter displays using EDID version 1 revision  $0 \rightarrow 2$  which do not meet all of these requirements.
- **Note** on EDID Data Structure Version 1, Revision 4: Item 4 is still required in EDID data structure version 1, revision 4. Items 5 and 6 above are optional but recommended. Certain markets require the display range limits and the display product name descriptors in order to be compliant with certain operating system logo certification programs.

### 3.10.1 The First 18 Byte Descriptor

The first 18 Byte Descriptor Block shall contain the preferred timing mode. The display manufacturer defines the "Preferred Timing Mode (PTM)" as the video timing mode that will produce the best quality image on the display's viewing screen. The display manufacturer defines the meaning of the words "best quality image". For most flat panel displays (FPD), the preferred timing mode will be the panel's "native timing" based on its "native pixel format".

### 3.10.2 Detailed Timing Descriptor: 18 bytes

The 18 byte detailed timing descriptor (stored in the 18 Byte Descriptors) is defined in Tables 3.21 & 3.22. Detailed timing descriptors may be defined in one, two, three or all four of the 18 byte descriptor fields. Refer to Section 3.10 for restrictions.

| Byte                                                     | # of  | Value                                                           | Detailed Timing Definitions                                       |                                                              |                                |
|----------------------------------------------------------|-------|-----------------------------------------------------------------|-------------------------------------------------------------------|--------------------------------------------------------------|--------------------------------|
| #                                                        | Bytes |                                                                 |                                                                   |                                                              |                                |
|                                                          |       |                                                                 | Stored Value = Pixel clock $\div$ 10,000                          |                                                              |                                |
| 0, 1                                                     | 2     | $(00\ 01)h \rightarrow (FF\ FF)h$                               | LSB stored in byte 0 and MSB stored in byte 1                     |                                                              |                                |
| 0, 1                                                     | -     | /                                                               | Range: 10 kHz to 655.35 MHz in 10 kHz steps                       |                                                              |                                |
|                                                          |       | (00 00)h                                                        | Reserved: Do not use for Detailed Timing Descriptor               |                                                              |                                |
| 2                                                        | 1     | $00h \rightarrow FFh$                                           | Horizontal Addressable Video in pixels contains lower 8 bits      |                                                              |                                |
| 3                                                        | 1     | $00h \rightarrow FFh$                                           | Horizontal Blanking in pixels contains lower 8 bits               |                                                              |                                |
|                                                          |       | ({HA}h, {HB}h)                                                  | Horizontal Addressable Video in pixels –                          |                                                              |                                |
| 4                                                        | 1     | where                                                           | stored in Upper Nibble : contains upper 4 bits                    |                                                              |                                |
| -                                                        | 1     | $0h \le HA \le Fh$ and                                          | Horizontal Blanking in pixels stored in Lower Nibble : contains   |                                                              |                                |
|                                                          |       | $0h \le HB \le Fh$                                              | upper 4 bits                                                      |                                                              |                                |
| 5                                                        | 1     | $00h \rightarrow FFh$                                           | Vertical Addressable Video in lines contains lower 8 bits         |                                                              |                                |
| 6                                                        | 1     | $00h \rightarrow FFh$                                           | Vertical Blanking in lines contains lower 8 bits                  |                                                              |                                |
|                                                          |       |                                                                 | ({VA}h, {VB}h)                                                    | Vertical Addressable Video in lines stored in Upper Nibble : |                                |
| 7                                                        | 1     | where                                                           | contains upper 4 bits                                             |                                                              |                                |
| /                                                        | 1     | $0h \le VA \le Fh$ and                                          | Vertical Blanking in lines stored in Lower Nibble : contains      |                                                              |                                |
|                                                          |       | $0h \le VB \le Fh$                                              | upper 4 bits                                                      |                                                              |                                |
| 8                                                        | 1     | $00h \rightarrow FFh$                                           | Horizontal Front Porch in pixels contains lower 8 bits            |                                                              |                                |
| 9                                                        | 1     | $00h \rightarrow FFh$                                           | Horizontal Sync Pulse Width in pixels contains lower 8 bits       |                                                              |                                |
|                                                          |       | $({VF}h, {VS}h)$                                                | Vertical Front Porch in Lines stored in Upper Nibble : contains   |                                                              |                                |
| 10                                                       | 1     | where                                                           | lower 4 bits                                                      |                                                              |                                |
| 10                                                       |       | $0h \le VF \le Fh$ and                                          | Vertical Sync Pulse Width in Lines stored in Lower Nibble :       |                                                              |                                |
|                                                          |       | $0h \leq VS \leq Fh$                                            | contains lower 4 bits                                             |                                                              |                                |
|                                                          |       | 7 6 5 4 3 2 1 0                                                 | Bit Definitions                                                   |                                                              |                                |
|                                                          | 1     | n n                                                             | Horizontal Front Porch in pixels contains upper 2 bits            |                                                              |                                |
| 1.1                                                      |       | n n                                                             | Horizontal Sync Pulse Width in Pixels contains upper 2 bits       |                                                              |                                |
| 11                                                       |       | n n                                                             | Vertical Front Porch in lines contains upper 2 bits               |                                                              |                                |
|                                                          |       | <br>n n                                                         | Vertical Sync Pulse Width in lines contains upper 2 bits          |                                                              |                                |
|                                                          |       | Value                                                           | Video Image Size & Border Definitions                             |                                                              |                                |
| 10                                                       |       |                                                                 | Horizontal Addressable Video Image Size in mm contains lower      |                                                              |                                |
| 12                                                       | 1     | $00h \rightarrow FFh$                                           | 8 bits                                                            |                                                              |                                |
| 10                                                       | 1     | 0.01                                                            | Vertical Addressable Video Image Size in mm contains lower 8      |                                                              |                                |
| 13                                                       | 1     | $00h \rightarrow FFh$                                           | bits                                                              |                                                              |                                |
|                                                          | 1     | ({HI}h, {VI}h)                                                  | Horizontal Addressable Video Image Size in mm stored in Upper     |                                                              |                                |
| 14                                                       |       | where                                                           | Nibble : contains upper 4 bits                                    |                                                              |                                |
|                                                          |       | $0h \le HI \le Fh$ and                                          | Vertical Addressable Video Image Size in mm stored in Lower       |                                                              |                                |
|                                                          |       |                                                                 | $0h \leq VI \leq Fh$                                              |                                                              | Nibble : contains upper 4 bits |
| 15                                                       | 1     |                                                                 | Right Horizontal Border or Left Horizontal Border in pixels refer |                                                              |                                |
| 15                                                       | 1     | 00h → FFh                                                       | to Section 3.12 – Right Border is equal to Left Border            |                                                              |                                |
| Top Vertical Border or Bottom Vertical Border in Lines - |       | Top Vertical Border or Bottom Vertical Border in Lines refer to |                                                                   |                                                              |                                |
| 16                                                       | 1     | $00h \rightarrow FFh$                                           | Section 3.12 – Top Border is equal to Bottom Border               |                                                              |                                |

Table 3.21 - Detailed Timing Definition --- Part 1

Notes for Table 3.21:

- 1. Pixel Clock Example: A Pixel Clock of 135MHz would be represented by 13500 decimal which is stored as BCh, 34h.
- 2. Horizontal Addressable Video is represented by a 12 bit number (Upper nibble of byte 4 and the 8 bits of byte 2) Range is 0 pixels to 4095 pixels.
- 3. Horizontal Blanking is represented by a 12 bit number (Lower nibble of byte 4 and the 8 bits of byte 3) Range is 0 pixels to 4095 pixels.

- 4. Vertical Addressable Video is represented by a 12 bit number (Upper nibble of byte 7 and the 8 bits of byte 5) Range is 0 lines to 4095 lines.
- 5. Vertical Blanking is represented by a 12 bit number (Lower nibble of byte 7 and the 8 bits of byte 6) Range is 0 lines to 4095 lines.
- 6. **Note:** Previous versions of the E-EDID Standard refer to the "H or V Front Porch" as the "H or V Sync Offset".
- 7. Horizontal Front Porch in Pixels (from blanking start to start of sync) is represented by a 10 bit number (Bits 7 & 6 of byte 11 and the 8 bits of byte 8) Range is 0 pixels to 1023 pixels.
- 8. Horizontal Sync Pulse Width in Pixels (from the end of the front porch to the start of the back porch) is represented by a 10 bit number (Bits 5 & 4 of byte 11 and the 8 bits of byte 9) Range is 0 pixels to 1023 pixels.
- 9. Vertical Front Porch in Lines (from blanking start to start of sync) is represented by a 6 bit number (Bits 3 & 2 of byte 11 and the upper nibble of byte 10) Range is 0 lines to 63 lines.
- Vertical Sync Pulse Width in Lines (from the end of the front porch to the start of the back porch) is represented by a 6 bit number (Bits 1 & 0 of byte 11 and the lower nibble of byte 10 Range is 0 lines to 63 lines.
- 11. Horizontal Addressable Video Image Size in mm is represented by a 12 bit number (Upper nibble of byte 14 and the 8 bits of byte 12) Range is 0 mm to 4095 mm.
- 12. Vertical Addressable Video Image Size in mm is represented by a 12 bit number (Lower nibble of byte 14 and the 8 bits of byte 13) Range is 0 mm to 4095 mm.
- 13. Right Horizontal Border or Left Horizontal Border in Pixels is represented by an 8 bit number (the 8 bits of byte 15) Range is 0 pixels to 255 pixels.
- 14. Top Vertical Border or Bottom Vertical Border in Lines is represented by an 8 bit number (the 8 bits of byte 16) Range is 0 lines to 255 lines.
- 15. Horizontal and vertical screen size fields in Table 3.12 define the active physical screen size of the display device. The active physical screen size is defined as the rectangular area where light can be controlled on the display. The horizontal and vertical addressable video image size fields in Table 3.21 define the addressable video size of the displayed image (derived from the incoming video signal).
  - For Example: When a 16 : 9 AR video signal with 1280 x 720 pixels is displayed on a 5 : 4 AR screen with 1280 x 1024 pixels, the horizontal image size in table 3.21 will be equal to the horizontal screen size in table 3.12. And the vertical image size in Table 3.21 will be less than the vertical screen size listed in table 3.12 (common term is "letterbox").
  - Another Example: When a 5 : 4 AR video signal with 1280 x 1024 pixels is displayed on a 16 : 9 AR screen with 1920 x 1080 pixels, the vertical image size in Table 3.21 will be equal to the vertical screen size in Table 3.12. And the horizontal image size in table 3.21 will be less than the horizontal screen size listed in Table 3.12 (common term is "pillarbox"). These examples assume that the scaling function (in the display) maintains the image aspect ratio of the video content while scaling the image up (or down) to the maximum horizontal or vertical screen size listed in Table 3.12.
- 16. The horizontal and vertical addressable video image sizes in Table 3.21 shall be less than or equal to the maximum horizontal and vertical screen sizes listed in Table 3.12.
- 17. For certain types of display products (for example front projectors with image zoom controls), the horizontal and vertical addressable video image sizes in Table 3.21 and screen sizes in table 3.12 are undefined and these fields shall be set to 0 mm and 0 cm, respectively.
- 18. Image Size vs. Aspect Ratio:
  - 18.1 For Information Technology (IT) timing modes, the source can determine the aspect ratio of the displayed image by looking at the number of horizontal pixels and the number of vertical lines listed in the detailed timing descriptor. Display manufacturers shall include the displayed image size (in mm) in the detailed timing descriptor. Exception refer to note 17.

- 18.2 For Digital Television (DTV) timing modes, the display manufacturer has the option to define the aspect ratio of the DTV timing mode by listing 16 mm by 9 mm or 4 mm by 3 mm in the Image Size data field (bytes 12, 13 & 14).
- 19. Refer to Section 3.12 for the definitions of the video timing parameters listed in Table 3.21.

| Byte<br># | # of<br>Bytes | Bit Definitions |     |         | Detailed Timing Definitions |                                                                  |
|-----------|---------------|-----------------|-----|---------|-----------------------------|------------------------------------------------------------------|
|           |               | 7               | 65  | 4 3 2 1 | 0                           | Signal Interface Type:                                           |
|           |               | 0               |     |         | _                           | Non-Interlaced (1 frame = 1 field)                               |
|           |               | 1               |     |         | _                           | Interlaced (1 frame = 2 fields)                                  |
|           |               | _               | 65  |         | 0                           | Stereo Viewing Support:                                          |
|           |               |                 | 0 0 |         | х                           | Normal Display – No Stereo. The value of bit 0 is "don't care"   |
|           |               |                 | 0 1 |         | 0                           | Field sequential stereo, right image when stereo sync signal = 1 |
|           |               |                 | 1 0 |         | 0                           | Field sequential stereo, left image when stereo sync signal = 1  |
|           |               |                 | 0 1 |         | 1                           | 2-way interleaved stereo, right image on even lines              |
|           |               |                 | 1 0 |         | 1                           | 2-way interleaved stereo, left image on even lines               |
|           |               |                 | 1 1 |         | 0                           | 4-way interleaved stereo                                         |
|           |               |                 | 1 1 |         | 1                           | Side-by-Side interleaved stereo                                  |
|           |               | _               |     | 4 3 2 1 |                             | Analog Sync Signal Definitions:                                  |
|           |               |                 |     | 0 0     | _                           | Analog Composite Sync:                                           |
| 17        | 1             |                 |     | 0 1     | _                           | Bipolar Analog Composite Sync:                                   |
|           |               |                 |     | 0_0_    | _                           | Without Serrations;                                              |
|           |               |                 |     | 0 _ 1 _ | _                           | With Serrations (H-sync during V-sync);                          |
|           |               |                 |     | 0 0     | _                           | Sync On Green Signal only                                        |
|           |               | _               |     | 0 _ 1   | _                           | Sync On all three (RGB) video signals                            |
|           |               |                 |     | 4 3 2 1 |                             | Digital Sync Signal Definitions:                                 |
|           |               |                 |     | 10      | _                           | Digital Composite Sync:                                          |
|           |               |                 |     | 100_    | _                           | Without Serrations;                                              |
|           |               |                 |     | 101_    | _                           | With Serrations (H-sync during V-sync);                          |
|           |               |                 |     | 11      | _                           | Digital Separate Sync:                                           |
|           |               |                 |     | 1 1 0 _ | _                           | Vertical Sync is Negative;                                       |
|           |               |                 |     | 1 1 1 _ | _                           | Vertical Sync is Positive;                                       |
|           |               |                 |     | 1 0     | _                           | Horizontal Sync is Negative (outside of V-sync)                  |
|           |               |                 |     | 1_1     |                             | Horizontal Sync is Positive (outside of V-sync)                  |

Table 3.22 - Detailed Timing Definition --- Part 2

Notes for Table 3.22: The following includes definitions for the labels in bits 4 & 3 of Table 3.22:

- 1. Analog Composite: Analog video standards embed the sync in the video signal, in the luminance channel (for Y/C, or in the case of composite video it still winds up basically in the same place), or in PC standards typically in the green channel of RGB analog video. Composite sync refers to any situation in which horizontal and vertical sync signals are carried in the same physical channel. Whether or not the vertical sync signal is "serrated" (i.e., contains horizontal sync pulses of the opposite polarity than normal) is a separate question. Typically in analog video signals, sync is carried as a "blacker than black" negative-going pulse (i.e., in the RS-343A standard, using the blanking level as the reference point, the sync tips are nominally -0.286V from blank, while the reference white level is +0.714V, for an overall 1.000 Vp-p signal).
- 2. Bipolar Analog Composite: For digital television, there are standards for analog component video interfaces defining timings for standard definition (SD), enhanced definition (ED) and high definition (HD) signals. A bipolar sync is defined for the SD and ED timings. A tri-level sync is defined for the HD timings. Both sync types are found only on the luminance (Y) signal; no sync pulses are present on either the 'Pb' or 'Pr' signals. The bipolar sync (in reference to the blanking level) is a negative pulse having an amplitude of -300 mV. The tri-level sync pulse will start at the zero volt level and transition to -300 mV. The next transition is +300 mV and then returns to

the zero volts level. The zero crossing is the sync reference. Although defined in the HD standards, the tri-level sync is generally not utilized by consumer equipment. The bipolar sync is typically used instead.

- 3. Digital Composite: Typically, "digital sync" refers to a situation in which the syncs are carried on a separate physical channel from the video signal (as in the "VGA" interface common in PCs, which has analog RGB video but discrete TTL sync lines). "Composite" here again refers to the case in which both horizontal and vertical syncs are combined into a single signal, most commonly carried on what would otherwise be the "horizontal" sync line.
- 4. Digital Separate: The horizontal and vertical syncs are carried separately (on "digital" lines) from the analog video signals, but in this case the horizontal and vertical syncs are also kept physically separate. This is the most common form of sync used in analog PC video interfaces such as the VGA interface.
- 5. Note that neither (3) or (4) above refers to a "fully-digital" display interface; in these cases, the horizontal and vertical sync information is generally embedded within the same data stream that carries the video information, and so cannot be physically isolated within the interface itself. The syncs will commonly be provided in separate form by the receiver device.

### 3.10.3 Display Descriptor Definitions - 18 bytes

The use of display descriptors is optional in EDID structure version 1, revision 4. The first 18 byte descriptor (at addresses  $36h \rightarrow 47h$ ) shall contain the Preferred Timing Mode (refer to Section 3.10.1). The remaining three 18-byte descriptors (at addresses  $48h \rightarrow 59h$ ,  $5Ah \rightarrow 6Bh$  and  $6Ch \rightarrow 7Dh$ ) may contain video timing definitions (refer to section 3.10.2) or alternately be defined as optional Display Descriptors using the general format shown in Table 3.23. Detailed descriptors of the data types are shown in Tables  $3.24 \rightarrow 3.36$ . Those 18-byte descriptors not used for Display Descriptors shall be used for detailed timings.

| Byte<br>#          | # of<br>Bytes | Values                | Display Descriptor Definitions                                                                                                                                 |                              |  |
|--------------------|---------------|-----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|--|
| 0, 1               | 2             | (00 00)h              | Indicates that this 18 byte descriptor is a Display Descriptor.                                                                                                |                              |  |
| 2                  | 1             | 00h                   | Reserved: Set to 00h when 18 byte descriptor is used as a Display Descriptor                                                                                   |                              |  |
|                    |               | Tag                   | Display Descriptor Tag                                                                                                                                         | Numbers                      |  |
|                    |               | FFh                   | Display Product Serial Number:                                                                                                                                 | Defined in Section 3.10.3.1  |  |
|                    |               | FEh                   | Alphanumeric Data String (ASCII):                                                                                                                              | Defined in Section 3.10.3.2  |  |
|                    |               | FDh                   | Display Range Limits: Includes optional timing information GTF using default parameters, GTF Secondary Curve or CVT Descriptor.<br>Defined in Section 3.10.3.3 |                              |  |
|                    |               | FCh                   | Display Product Name:                                                                                                                                          | Defined in Section 3.10.3.4  |  |
| 2                  | 1             | FBh                   | Color Point Data:                                                                                                                                              | Defined in Section 3.10.3.5  |  |
| 3                  | 1             | FAh                   | Standard Timing Identifications:                                                                                                                               | Defined in Section 3.10.3.6  |  |
|                    |               | F9h                   | Display Color Management (DCM) Data:                                                                                                                           | Defined in Section 3.10.3.7  |  |
|                    |               | F8h                   | CVT 3 Byte Timing Codes:                                                                                                                                       | Defined in Section 3.10.3.8  |  |
|                    |               | F7h                   | Established Timings III                                                                                                                                        | Defined in Section 3.10.3.9  |  |
|                    |               | 11h → F6h             | Reserved: Currently undefined Do Not Use                                                                                                                       | Refer to Section 3.10.3.10   |  |
|                    |               | 10h                   | Dummy Descriptor:                                                                                                                                              | Defined in Section 3.10.3.11 |  |
|                    |               | $00h \rightarrow 0Fh$ | Manufacturer Specified Display Descriptors:                                                                                                                    | Defined in Section 3.10.3.12 |  |
| 4                  | 1             | 00h                   | Reserved: Set to 00h when 18 byte descriptor is used as a Display Descriptor Exception: Refer to Display Range Limits Descriptor (Tag FDh) – Section           |                              |  |
|                    | -             |                       | 3.10.3.3                                                                                                                                                       |                              |  |
| $5 \rightarrow 17$ | 13            | $00h \rightarrow FFh$ | Stored data dependant on Display Descriptor I                                                                                                                  | Definition                   |  |

Table 3.23 - Display Descriptor Summary

Notes for Table 3.23:

- 1. The first three bytes of the block shall be '000000h', when the 18 byte descriptor contains a display descriptor (not a detailed timing). The fourth byte shall contain the display descriptor tag number (from Table 3.23) and the fifth byte shall be '00h'.
- 2. It should be noted here that VESA has decided to replace the GTF Standard with the CVT Standard. The GTF Standard will be (or is) deprecated. For the purpose of GTF legacy support, EDID data structure version 1, revision 4 still supports GTF. However, VESA recommends that all new designs (where appropriate) use CVT.

#### 3.10.3.1 Display Product Serial Number Descriptor Definition (tag #FFh)

Up to 13 characters (using ASCII codes) of a serial number may be stored in the Display Product Serial Number Descriptor (tag #FFh). The data shall be sequenced such that the 1<sup>st</sup> byte (ASCII code) = the 1<sup>st</sup> character, the 2<sup>nd</sup> byte (ASCII code) = the 2<sup>nd</sup> character, etc. If there are less than 13 characters in the string, then terminate the serial number string with ASCII code '0Ah' (line feed) and pad the unused bytes in the field with ASCII code '20h' (space). Table 3.24 defines the format. Refer to Appendix E for ASCII Reference Tables.

| Byte #             | Value                 | Display Product Serial Number Definition                                     |
|--------------------|-----------------------|------------------------------------------------------------------------------|
| 0, 1               | (00 00)h              | Indicates that this 18 byte descriptor is a Display Descriptor.              |
| 2                  | 00h                   | Reserved: Set to 00h when 18 byte descriptor is used as a Display Descriptor |
| 3                  | FFh                   | Display Product Serial Number Descriptor Tag Number:                         |
| 4                  | 00h                   | Reserved:                                                                    |
| $5 \rightarrow 17$ | $00h \rightarrow FFh$ | Up to 13 alphanumeric characters of a serial number may be stored.           |

 Table 3.24 – Display Product Serial Number Descriptor Definition

For Example: S/N is 'A0123456789' is stored as '00h 00h 00h FFh 00h 41h 30h 31h 32h 33h 34h 35h 36h 37h 38h 39h 0Ah 20h'.

### 3.10.3.2 Alphanumeric Data String Descriptor Definition (tag #FEh)

Up to 13 characters (using ASCII codes) of a data string may be stored in the Alphanumeric Data String Descriptor (tag #FEh). The data shall be sequenced such that the 1<sup>st</sup> byte (ASCII code) = the 1<sup>st</sup> character, the  $2^{nd}$  byte (ASCII code) = the  $2^{nd}$  character, etc. If there are less than 13 characters in the string, then terminate the alphanumeric data string with ASCII code '0Ah' (line feed) and pad the unused bytes in the field with ASCII code '20h' (space). Table 3.25 defines the format. Refer to Appendix E for ASCII Reference Tables.

| Byte # | Value                 | Alphanumeric Data String Definition                                          |
|--------|-----------------------|------------------------------------------------------------------------------|
| 0, 1   | (00 00)h              | Indicates that this 18 byte descriptor is a Display Descriptor.              |
| 2      | 00h                   | Reserved: Set to 00h when 18 byte descriptor is used as a Display Descriptor |
| 3      | FEh                   | Alphanumeric Data String Descriptor Tag Number:                              |
| 4      | 00h                   | Reserved:                                                                    |
| 5      | $00h \rightarrow FFh$ | Up to 13 alphanumeric characters of a data string may be stored.             |

 Table 3.25 – Alphanumeric Data String Descriptor Definition

Notes for Table 3.25:

- 1. For Example: ASCII Data String is 'THISISATEST' is stored as '00h 00h 00h FEh 00h 54h 48h 49h 53h 49h 53h 41h 54h 45h 53h 54h 0Ah 20h'''.
- 2. Note: Refer to VESA's LS-EXT Standard for using localization (native language) strings in an extension block.

#### 3.10.3.3 Display Range Limits & Additional Timing Descriptor Definition (tag #FDh)

The use of the Display Range Limit Descriptor is optional in EDID version 1, revision 4. The range limits (minimum & maximum) of the vertical scanning rate and the horizontal scanning rate as well as the maximum supported pixel clock frequency shall be declared in the Display Range Limits Descriptor (tag #FDh). Refer to Table 3.26. For EDID Structure Version 1, Revision 4, the use of the display range limits descriptor is optional (but recommended). Refer to Note 5 of Table 3.14.

The Display Range Limits Descriptor will include one of the following sets of information:

1. Range Limits Only --- no additional timing information provided (defined in table 3.26) - Default GTF, GTF Secondary Curve and CVT are not supported or

2. Range Limits provided & Default GTF is supported - no additional timing information provided (defined in Table 3.26) or

3. Range Limits provided & GTF Secondary Curve Timing Formula is supported – Secondary GTF Curve Data (defined in Table 3.27) or

4. Range Limits provided & CVT Timing Formula is supported – Coordinated Video Timing Data (defined in Table 3.28).

| Byte<br># | Value                                                                                       | Display Range Limits Definitions                                                                            |  |  |
|-----------|---------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|--|--|
| 0, 1      | (00 00)h                                                                                    | Indicates that this 18 byte descriptor is a Display Descriptor.                                             |  |  |
| 2         | 00h                                                                                         | Reserved: Set to 00h when 18 byte descriptor is used as a Display Descriptor                                |  |  |
| 3         | FDh                                                                                         | Tag Number for Display Range Limits Descriptor                                                              |  |  |
|           | 7654 3210                                                                                   | Display Range Limits Offsets: FLAGs                                                                         |  |  |
|           | 0 0 0 0 0 0                                                                                 | Vertical Rate Offsets are zero.                                                                             |  |  |
|           | 0 0 0 0 1 0                                                                                 | Max. Vertical Rate + 255 Hz Offset; Min. Vertical Rate is not offset                                        |  |  |
|           | 0 0 0 0 - 1 1                                                                               | Max. Vertical Rate + 255 Hz Offset; Min. Vertical Rate + 255 Hz Offset                                      |  |  |
| 4         | 0 0 0 0 0 0                                                                                 | Horizontal Rate Offsets are zero.                                                                           |  |  |
|           | 0 0 0 0 1 0                                                                                 | Max. Horizontal Rate + 255 kHz Offset; Min. Horizontal Rate is not offset                                   |  |  |
|           | 0 0 0 0 1 1                                                                                 | Max. Horizontal Rate + 255 kHz Offset; Min. Horizontal Rate + 255 kHz<br>Offset                             |  |  |
|           | $\begin{array}{c} 01h,  04h \rightarrow 07h,  09h, \\ 0Dh  10h \rightarrow FFh \end{array}$ | Reserved: Do not use.                                                                                       |  |  |
|           | $01h \rightarrow FFh$                                                                       | Minimum Vertical Rate: (for interlace this refers to the field rate)                                        |  |  |
| 5         | [Byte 4, Bits 1, 0] $\neq$ 11                                                               | Binary coded rate in Hz, integer only (range is 1 Hz to 255 Hz)                                             |  |  |
| 5         | [Byte 4, Bits 1, 0] = 11                                                                    | Binary coded rate in Hz, integer only (range is 256 Hz to 510 Hz)                                           |  |  |
|           | 00h                                                                                         | Reserved: Do Not Use.                                                                                       |  |  |
|           | $01h \rightarrow FFh$                                                                       | Maximum Vertical Rate:(for interlace this refers to the field rate)                                         |  |  |
|           | [Byte 4, Bit 1] ≠ 1                                                                         | Binary coded rate in Hz, integer only (range is 1 Hz to 255 Hz)                                             |  |  |
| 6         | [Byte 4, Bit 1] = 1                                                                         | Binary coded rate in Hz, integer only (range is 256 Hz to 510 Hz)                                           |  |  |
|           | 0.01                                                                                        | <i>Note: Minimum rate value shall be less than or equal to maximum rate value</i>                           |  |  |
|           | 00h                                                                                         | Reserved: Do Not Use.                                                                                       |  |  |
|           | $01h \rightarrow FFh$                                                                       | Minimum Horizontal Rate:                                                                                    |  |  |
| 7         | [Byte 4, Bits 3, 2] $\neq$ 11                                                               | Binary coded rate in kHz, integer only (range is 1 kHz to 255 kHz)                                          |  |  |
|           | [Byte 4, Bits 3, 2] = 11                                                                    | Binary coded rate in kHz, integer only (range is 256 kHz to 510 kHz)<br>Reserved: Do Not Use.               |  |  |
|           | $00h$ $01h \rightarrow FFh$                                                                 | Maximum Horizontal Rate:                                                                                    |  |  |
|           | [Byte 4, Bit 3] $\neq$ 1                                                                    | Binary coded rate in kHz, integer only (range is 1 kHz to 255 kHz)                                          |  |  |
| 8         | [Byte 4, Bit 3] $\neq$ 1<br>[Byte 4, Bit 3] = 1                                             | Binary coded rate in kHz, integer only (range is 256 kHz to 510 kHz)                                        |  |  |
| 0         |                                                                                             | <b>Note:</b> Minimum rate value shall be less than or equal to maximum rate value                           |  |  |
|           | 00h                                                                                         | Reserved: Do Not Use.                                                                                       |  |  |
|           | $01h \rightarrow FFh$                                                                       | Maximum Pixel Clock:                                                                                        |  |  |
|           |                                                                                             | Binary coded clock rate in MHz $\div$ 10, <u>Example</u> : 130MHz is '0Dh'                                  |  |  |
| 9         |                                                                                             | <b>Note:</b> Maximum Pixel Clock shall be rounded to the nearest multiple of 10                             |  |  |
|           |                                                                                             | MHz.                                                                                                        |  |  |
|           | 00h                                                                                         | Reserved: Do Not Use.                                                                                       |  |  |
|           |                                                                                             | <b>Video Timing Support Flags:</b> Bytes $10 \rightarrow 17$ indicate support for additional video timings. |  |  |
|           | 00h                                                                                         | Default GTF supported if bit 0 in Feature Support Byte at address $18h = 1$                                 |  |  |
| 10        | 01h                                                                                         | Range Limits Only no additional timing information is provided.                                             |  |  |
| -         | 02h                                                                                         | Secondary GTF supported requires support for Default GTF                                                    |  |  |
|           | 04h                                                                                         | CVT supported if bit 0 in Feature Support Byte at address <b>18</b> h = 1                                   |  |  |
|           | 03h, 05h → FFh                                                                              | Reserved for future timing definitions Do Not Use.                                                          |  |  |
| 11        | 0Ah                                                                                         | Line Feed (if Byte $10 = 00h$ or $01h$ )                                                                    |  |  |
| 11        | 00h → FFh                                                                                   | Video Timing Data (if Byte $10 = 02h$ or $04h$ ) Refer to Tables $3.27 \rightarrow 3.28$                    |  |  |
| 12 →      | 20h                                                                                         | Space (if Byte 10 = 00h or 01h)                                                                             |  |  |
| 17        | $00h \rightarrow FFh$                                                                       | Video Timing Data (if Byte $10 = 02h$ or $04h$ ) Refer to Tables $3.27 \rightarrow 3.28$                    |  |  |

Notes for Table 3.26:

- 1. For EDID Structure Version 1, Revision 4, the use of the display range limits descriptor is optional (but recommended). However, the Display Range Limits shall be included in the BASE EDID, if bit 0 of the Feature Support Byte at address **18h** is set to 1 (indicating a continuous frequency display).
- 2. Any timing outside these limits may cause the display to enter a self-protection mode (out of range error) or may cause damage to the display. The host shall always verify that an intended timing falls within these limits before the timing is applied assumes that the Display Range Limits are defined.
- 3. Video Timing Support Flag (in Byte 10) = 00h and bit 0 of the Feature Support Byte at address 18h set to 1 (indicating a continuous frequency display) indicates that this display supports GTF generated video timing modes using the default GTF parameters. If Byte 10 = 00h, then bit 0 of the Feature Support Byte at address 18h shall not be set to 0 (indicating a non-continuous frequency multi-mode display). All GTF compliant displays are continuous frequency.
- 4. Video Timing Support Flag (in Byte 10) = 01h and bit 0 of the Feature Support Byte at address 18h set to 1 (indicating a continuous frequency display) indicates that this display will present an image with any valid video mode timing within the Display Range Limits defined by Bytes 5 → 9. The displayed image may not be properly sized or centered. If bit 0 of the Feature Support Byte at address 18h set to 0 (indicating a non-continuous frequency multi-mode display) indicates that this display will only present an image with the valid video mode timings (declared in the Established, Standard and Detailed Timings) that are listed in the BASE EDID or any EXTENSION Block.
- 5. Video Timing Support Flag (in Byte 10) = 02h and bit 0 of the Feature Support Byte at address 18h set to 1 (indicating a continuous frequency display) indicates that this display supports GTF generated video timing modes using the default GTF parameters and GTF Secondary Curve parameters (refer to Table 3.27). If Byte 10 = 02h, then bit 0 of the Feature Support Byte at address 18h shall not be set to 0 (indicating a non-continuous frequency multi-mode display). All GTF compliant displays are continuous frequency.
- 6. Video Timing Support Flag (in Byte 10) = 04h and bit 0 of the Feature Support Byte at address 18h set to 1 (indicating a continuous frequency display) indicates that this display supports Coordinated Video Timing (CVT) generated video timing modes using the CVT parameters defined in table 3.28. If Byte 10 = 04h, then bit 0 of the Feature Support Byte at address 18h shall not be set to 0 (indicating a non-continuous frequency multi-mode display). All CVT compliant displays are continuous frequency.
- 7. All video timing modes (listed in BASE EDID or timing extensions) shall be supported by the display and the frequencies for the listed video timing modes shall fall within the minimum and maximum horizontal and vertical frequency range limits.
- 8. Use of the continuous frequency flag (bit 0 at address **18h**) is only required if the display manufacturer wants to enable the display to be used in a continuous frequency mode (as opposed to discrete timings specified elsewhere). If the continuous frequency bit is set to '1', then the Display Range Limits Descriptor (refer to Section 3.10.3.3) is required to be included in BASE EDID.
- 9. "Range Limits Only" (byte 10) indicates that the display supports only those video timing modes that are listed in BASE EDID or certain EXTENSION blocks.

#### 3.10.3.3.1 Display Range Limits with GTF Secondary Curve Definition:

With EDID Structure version 1, revision 4, GTF has been *Deprecated* (GTF is considered obsolete and in the process of being phased out) in favor of CVT. GTF has been retained in EDID Structure version 1, revision 4 for legacy support only and may be retired in a future release of the E-EDID Standard. VESA no longer recommends using GTF. Table 3.27 defines support for the GTF

Secondary Timing Curve Formula. Refer to the VESA Generalized Timing Formula (GTF) Standard for more information on the timing parameters listed in Table 3.27.

| Byte<br>#         | Value                             | GTF Secondary Curv                           | ve Definitions                   |
|-------------------|-----------------------------------|----------------------------------------------|----------------------------------|
| $0 \rightarrow 9$ | $00h \rightarrow FFh$             | <b>Defines Display Range Limits:</b>         | Refer to Table 3.26              |
| 10                | 02h                               | Indicates GTF Secondary Curve supported:     | (with Continuous Video Timings)  |
| 11                | 00h                               | Reserved: Shall be set to '00h'              |                                  |
| 12                | $00h \rightarrow FFh$             | Start break frequency for secondary curve:   | ((Horizontal Frequency) ÷ 2) kHz |
| 13                | $00h \rightarrow FFh$             | $C \times 2$ : (range is $0 \le C \le 127$ ) |                                  |
| 14, 15            | $(00\ 00)h \rightarrow (FF\ FF)h$ | M: (range is $0 \le M \le 65,535$ ) Value or | f M stored as LSB first.         |
| 16                | $00h \rightarrow FFh$             | K: (range is $0 \le K \le 255$ )             |                                  |
| 17                | $00h \rightarrow FFh$             | $J \times 2$ : (range is $0 \le J \le 127$ ) |                                  |

Table 3.27 – Display Range Limits & GTF Secondary Curve Block Definition

Notes for Table 3.27:

- 1. A display that supports GTF (Secondary Curve) shall also support the GTF (Default) and bit 0 in the Feature Support Byte (at address **18h**) shall be set to '1'.
- 2. If a display supports GTF (Default only) or GTF (Default and Secondary Curve) the EDID table shall include the Display Range Limits (refer to Table 3.26).

### 3.10.3.3.2 Display Range Limits with CVT Support Definition:

For displays that support the VESA CVT Standard, you have the option to include CVT support information in the Display Range Limits Descriptor. Table 3.28 defines support for CVT. Refer to the VESA CVT Standard for more information on the timing parameters listed in Table 3.28.

| Byte<br>#         | Value                 |   |      |       |      |      |   |                                                   | <b>CVT Support Definitions</b>                                                       |
|-------------------|-----------------------|---|------|-------|------|------|---|---------------------------------------------------|--------------------------------------------------------------------------------------|
| $0 \rightarrow 9$ | $00h \rightarrow FFh$ |   |      |       | ĥ    |      |   | Defines Display Range Limits: Refer to Table 3.26 |                                                                                      |
| 10                |                       |   |      | 04    | 4h   |      |   |                                                   | Indicates CVT supported: (with Continuous Video Timings)                             |
| 11                |                       |   | 1h → | ► Fh; | 0h - | → Fł | 1 |                                                   | CVT Standard Version Number: e.g. '11h' implies "Version 1.1"                        |
|                   | 7                     | 6 | 5    | 4     | 3    | 2    |   |                                                   | Additional Pixel Clock Precision:                                                    |
|                   | 0                     | 0 | 0    | 0     | 0    | 0    | _ | _                                                 | 6 bits of extra pixel clock resolution for 0.25 MHz accuracy                         |
| 10                |                       |   | t    | 0     |      |      |   |                                                   | Max. Pix Clk = [(Byte 9) × 10] – [(Byte 12: bits $7 \rightarrow 2) \times 0.25$ MHz] |
| 12                | 1                     | 1 | 1    | 1     | 1    | 1    |   | _                                                 | Byte 9 is rounded up to the nearest multiple of 10 MHz                               |
|                   |                       | _ | _    | _     | -    | _    | 1 | 0                                                 | Maximum Active Pixels per Line - Most Significant Bits:                              |
|                   | _                     | _ | _    | _     | _    | _    | n | n                                                 | Range is $00 \rightarrow 11$                                                         |
|                   | 7                     | 6 | 5    | 4     | 3    | 2    | 1 | 0                                                 | Maximum Active Pixels per Line - Least Significant Bits:                             |
|                   | 0                     | 0 | 0    | 0     | 0    | 0    | 0 | 0                                                 | Indicates that there is no limit on the number of Horiz. Active Pixels               |
| 13                | 0                     | 0 | 0    | 0     | 0    | 0    | 0 | 1                                                 | Maximum Active Pixels per Line - Least Significant Bits                              |
|                   |                       |   |      | t     | 0    |      |   |                                                   | Maximum Horizontal Active Pixels =                                                   |
|                   | 1                     | 1 | 1    | 1     | 1    | 1    | 1 | 1                                                 | $8 \times [Byte 13 + (256 \times (Byte 12: bits 1, 0))]$                             |
|                   | 7                     | 6 | 5    | 4     | 3    | 2    | 1 | 0                                                 | Supported Aspect Ratios:                                                             |
|                   | 1                     | _ | _    | _     | _    | 0    | 0 | 0                                                 | 4 : 3 AR                                                                             |
|                   | _                     | 1 | _    | _     | _    | 0    | 0 | 0                                                 | 16 : 9 AR                                                                            |
| 14                | _                     | _ | 1    | _     | _    | 0    | 0 | 0                                                 | 16 : 10 AR                                                                           |
|                   | _                     | _ | _    | 1     | _    | 0    | 0 | 0                                                 | 5 : 4 AR                                                                             |
|                   | _                     | _ | _    | _     | 1    | 0    | 0 | 0                                                 | 15 : 9 AR                                                                            |
|                   |                       |   |      |       |      | 0    | 0 | 0                                                 | Reserved Bits: Shall be set to '000'.                                                |
|                   | 7                     | 6 | 5    | r     |      | 2    | 1 | 0                                                 | Preferred Aspect Ratio:                                                              |
|                   | 0                     | 0 | 0    | _     | _    | 0    | 0 | 0                                                 | 4 : 3 AR                                                                             |
|                   | 0                     | 0 | 1    | _     | _    | 0    | 0 | 0                                                 | 16 : 9 AR                                                                            |
|                   | 0                     | 1 | 0    | _     | _    | 0    | 0 | 0                                                 | 16 : 10 AR                                                                           |
|                   | 0                     | 1 | 1    | _     |      | 0    | 0 | 0                                                 | 5 : 4 AR                                                                             |
|                   | 1                     | 0 | 0    | _     | _    | 0    | 0 | 0                                                 | 15 : 9 AR                                                                            |
| 15                | n                     | n | n    | _     | _    | 0    | 0 | 0                                                 | Reserved Values: 'nnn' = '101' $\rightarrow$ '111' shall not be used.                |
|                   |                       |   |      | 4     | 3    |      |   |                                                   | CVT Blanking Support:                                                                |
|                   | _                     | _ | _    | _     | 0    | 0    | 0 | 0                                                 | Standard CVT Blanking is not supported.                                              |
|                   | _                     | _ | _    |       | 1    | 0    | 0 | 0                                                 | Standard CVT Blanking is supported.                                                  |
|                   | _                     | _ | _    | 0     | _    | 0    | 0 | 0                                                 | Reduced CVT Blanking is not supported.                                               |
|                   | _                     | _ | _    | 1     | _    | 0    | 0 | 0                                                 | Reduced CVT Blanking is supported (preferred).                                       |
|                   |                       | _ | _    | _     | _    | 0    | 0 | 0                                                 | Reserved Bits: Shall be set to '000'.                                                |
|                   | 7                     | 6 | 5    | 4     | 3    | 2    | 1 | 0                                                 | Type of Display Scaling Supported:                                                   |
|                   | 1                     | _ | _    | _     | 0    | 0    | 0 | 0                                                 | Horizontal Shrink                                                                    |
| 16                | _                     | 1 | _    | _     | 0    | 0    | 0 | 0                                                 | Horizontal Stretch                                                                   |
| 16                | _                     | _ | 1    | _     | 0    | 0    | 0 | 0                                                 | Vertical Shrink                                                                      |
|                   | _                     | _ | _    | 1     | 0    | 0    | 0 | 0                                                 | Vertical Stretch                                                                     |
|                   | _                     | _ | _    | _     | 0    | 0    | 0 | 0                                                 | Reserved Bits: Shall be set to '0000'.                                               |
| 17                |                       |   | 0    | 1h –  |      | ĥ    |   |                                                   | Preferred Vertical Refresh Rate: Rate is in Hz; Integer Value only.                  |
|                   |                       |   |      | 00    | Oh   |      |   |                                                   | Reserved Value: '00h' shall not be used.                                             |

 Table 3.28 – Display Range Limits & CVT Support Definition

Notes for Table 3.28:

1. Horizontal Shrink: Input horizontal active pixel count can be greater than the preferred horiz. pixel count.

2. Horizontal Stretch: Input horizontal active pixel count can be less than the preferred horiz. pixel count.

3. Vertical Shrink: Input vertical active line count can be greater than the preferred vert. line count.

4. Vertical Stretch: Input vertical active line count can be less than the preferred vert. line count.

# 3.10.3.4 Display Product Name (ASCII) String Descriptor Definition (tag #FCh)

The model name of the display product may be listed (optional but recommended) in the Display Product Name (ASCII) String Descriptor (tag #FCh). Up to 13 alphanumeric characters (using ASCII codes) may be used to define the model name of the display product. The data shall be sequenced such that the  $1^{st}$  byte (ASCII code) = the  $1^{st}$  character, the  $2^{nd}$  byte (ASCII code) = the  $2^{nd}$  character, etc. If there are less than 13 characters in the string, then terminate the display product name string with ASCII code '0Ah' (line feed) and pad the unused bytes in the field with ASCII code '20h' (space). Refer to Table 3.29 for information on the Display Product Name String. Refer to Appendix E for ASCII Reference Tables.

|   | Byte<br>#         | Value             | Display Product Name Definition                                                   |
|---|-------------------|-------------------|-----------------------------------------------------------------------------------|
| ſ | $0 \rightarrow 4$ | (00 00 00 FC 00)h | Display Product Name (ASCII) String Descriptor Tag Number (FCh)                   |
|   | 5 <b>→</b> 17     | ASCII String      | Up 13 alphanumeric characters (using ASCII Codes) of a data string may be stored. |

| Table 3 20 Display Product N   | Nomo (ASCII) String | Descriptor Block Definition |
|--------------------------------|---------------------|-----------------------------|
| Table 3.29 – Display Product N | Name (ASCII) String | Descriptor block Demilion   |

For Example: The Display Product Name String, 'XYZ\_Monitor', is stored as '00h 00h 00h FCh 00h 58h 59h 5Ah 20h 4Dh 6Fh 6Eh 6Ch 74h 6Fh 72h 0Ah 20h'.

#### 3.10.3.5 Color Point Descriptor Definition (tag #FBh)

Chromaticity coordinates (x, y) for up to two additional sets (see Section 3.7) of white points may be stored in the Color Point Descriptor (Tag # FBh). In addition, GAMMAs associated with each white point may also be defined. The color point definition is listed in Table 3.30.

| Byte<br>#         |       |     |     | Va       | lue      | Color Point Descriptor Definition         |     |                                  |                                             |
|-------------------|-------|-----|-----|----------|----------|-------------------------------------------|-----|----------------------------------|---------------------------------------------|
| $0 \rightarrow 4$ |       |     | (   | 00 00 00 | ) FB 00) | )h                                        |     |                                  | Color Point Descriptor Tag Number (FBh)     |
| 5                 |       |     |     | 01h -    | → FFh    | White Point Index Number (Binary)         |     |                                  |                                             |
| 3                 |       |     |     | 00       | Dh       |                                           |     |                                  | Reserved: Do not use.                       |
|                   | 7     | 6   | 5   | 4        | 3        | 2                                         | 1   | 0                                | Bit Definitions                             |
| 6                 | 0     | 0   | 0   | 0        | Wx1      | Wx0                                       | Wy1 | Wy0                              | White-x, y                                  |
| 7                 | Wx9   | Wx8 | Wx7 | Wx6      | Wx5      | Wx4                                       | Wx3 | Wx2                              | White-x                                     |
| 8                 | Wy9   | Wy8 | Wy7 | Wy6      | Wy5      | Wy4                                       | Wy3 | Wy2                              | White-y                                     |
|                   |       |     |     | 0.01-    | → FEh    |                                           |     |                                  | Value Stored = $(GAMMA \times 100) - 100$   |
|                   |       |     |     | 00n –    | → FEN    | Range is $1.00 \rightarrow 3.54$          |     |                                  |                                             |
| 9                 | 9 FFh |     |     |          |          |                                           |     | GAMMA Value is not defined here. |                                             |
|                   |       |     |     |          |          | Then GAMMA data shall be stored in an     |     |                                  |                                             |
|                   |       |     |     |          |          |                                           |     |                                  | EXTENSION Block; for example, DI-EXT        |
| 10                |       |     |     | 02h –    | → FFh    | White Point Index Number (Binary)         |     |                                  |                                             |
| 10                |       | 00h |     |          |          |                                           |     |                                  | Bytes 11 to 14 are reserved – set to '00h'  |
|                   | 7     | 6   | 5   | 4        | 3        | 2                                         | 1   | 0                                | Bit Definitions                             |
| 11                | 0     | 0   | 0   | 0        | Wx1      | Wx0                                       | Wy1 | Wy0                              | White-x, y                                  |
| 12                | Wx9   | Wx8 | Wx7 | Wx6      | Wx5      | Wx4                                       | Wx3 | Wx2                              | White-x                                     |
| 13                | Wy9   | Wy8 | Wy7 | Wy6      | Wy5      | Wy4                                       | Wy3 | Wy2                              | White-y                                     |
|                   |       |     |     | 00h -    | > FEb    | Value Stored = $(GAMMA \times 100) - 100$ |     |                                  |                                             |
|                   |       |     |     | 0011 -   | > I'L'II | Range is $1.00 \rightarrow 3.54$          |     |                                  |                                             |
| 14                |       |     |     | Fl       | Fh       |                                           |     |                                  | GAMMA Value is not defined here             |
|                   |       |     |     |          |          |                                           |     |                                  | Then GAMMA data shall be stored in an       |
|                   |       |     |     |          |          |                                           |     |                                  | EXTENSION Block; for example, DI-EXT        |
| 15                |       |     |     | 04       | 4h       |                                           |     |                                  | Line Feed - (All other values are reserved) |

Table 3.30 – Additional Color Point Descriptor Definition

|  | 16, 17 | 20h | Space - (All other values are reserved) |
|--|--------|-----|-----------------------------------------|
|--|--------|-----|-----------------------------------------|

Two sets of white point values may be stored. The white point chromaticity coordinates (x, y) shall be expressed as fractional numbers, accurate to the thousandth place. Each number shall be represented by a binary fraction, which is 10 bits in length. In this fraction a value of one for the bit immediately right of the decimal point (bit 9) represents 2 raised to the -1 power. A value of 1 in the right most bit (bit 0) represents a value of 2 raised to the -10 power. Add together the values for all bits set to '1'. See Table 3.31.

Some displays are capable of supporting more than one white point (color temperature). The white point index number is simply an identifier number in the range of 1 to 255. The second white point (and the white GAMMA) shall be listed first in bytes  $5 \rightarrow 9$ . A third (optional) supported white point (different index number) may be listed in bytes  $10 \rightarrow 14$ .

| Bit # | Converted Back to Decimal                                                      |
|-------|--------------------------------------------------------------------------------|
| 9     | If bit 9 is set to '1', then add 2 raised to the power of $-1 = 0.500$         |
| 8     | If bit 8 is set to '1', then add 2 raised to the power of $-2 = 0.250$         |
| 7     | If bit 7 is set to '1', then add 2 raised to the power of $-3 = 0.125$         |
| 6     | If bit 6 is set to '1', then add 2 raised to the power of $-4 = 0.625$         |
| 5     | If bit 5 is set to '1', then add 2 raised to the power of $-5 = 0.03125$       |
| 4     | If bit 4 is set to '1', then add 2 raised to the power of $-6 = 0.01563$       |
| 3     | If bit 3 is set to '1', then add 2 raised to the power of $-7 = 0.00781$       |
| 2     | If bit 2 is set to '1', then add 2 raised to the power of $-8 = 0.00391$       |
| 1     | If bit 1 is set to '1', then add 2 raised to the power of $-9 = 0.001953125$   |
| 0     | If bit 0 is set to '1', then add 2 raised to the power of $-10 = 0.0009765625$ |

Table 3.31 – Ten bit Binary Fraction Representation

In Table 3.30, the high order bits  $(9 \rightarrow 2)$  shall be stored as a single byte. The low order bits  $(1 \rightarrow 0)$  shall be paired with other low order bits to form the lower nibble of a byte. With this representation, all values should be accurate to +/- 0.0005 of the actual value. Examples are shown in Table 3.32.

 Table 3.32 – Ten bit Binary Fraction Representation

| Actual Value | <b>Binary value</b> | Converted Back to Decimal |
|--------------|---------------------|---------------------------|
| 0.610        | 1001110001          | 0.6103516                 |
| 0.307        | 0100111010          | 0.3066406                 |
| 0.150        | 0010011010          | 0.1503906                 |

The display transfer characteristic, referred to as GAMMA, is stored in a 1-byte field capable of representing GAMMA values in the range of 1.00 to 3.54. The integer value stored is determined by the formula:

Value stored =  $(GAMMA \times 100) - 100$ 

For example, a GAMMA value of 2.2 would be represented as 120 decimal (78h).

### 3.10.3.6 Standard Timing Identifier Definition (tag #FAh)

Six additional Standard Timings may be listed as a display descriptor (tag #FAh). The definition is shown in Table 3.33. The two byte codes (for each Standard Timing) are defined in Section 3.9.

| Byte<br>#         | Value                 | Standard Timing Identifier Definition       |
|-------------------|-----------------------|---------------------------------------------|
| $0 \rightarrow 4$ | (00 00 00 FA 00)h     | Standard Timing Identifier Tag Number (FAh) |
| 5                 | $00h \rightarrow FFh$ | Standard Timing Identification 9            |
| 6                 | $00h \rightarrow FFh$ | Standard Timing Identification 9            |
| 7                 | $00h \rightarrow FFh$ | Standard Timing Identification 10           |
| 8                 | $00h \rightarrow FFh$ | Standard Timing Identification To           |
| 9                 | $00h \rightarrow FFh$ | Standard Timing Identification 11           |
| 10                | $00h \rightarrow FFh$ |                                             |
| 11                | $00h \rightarrow FFh$ | Standard Timing Identification 12           |
| 12                | $00h \rightarrow FFh$ |                                             |
| 13                | $00h \rightarrow FFh$ | Standard Timing Identification 13           |
| 14                | $00h \rightarrow FFh$ | Standard Timing Identification 15           |
| 15                | $00h \rightarrow FFh$ | Standard Timing Identification 14           |
| 16                | $00h \rightarrow FFh$ | Standard Timing Identification 14           |
| 17                | 0Ah                   | Line Feed (All other values are reserved)   |

Table 3.33 – Standard Timings (#9 to #14) Identifier Definitions

Notes for Table 3.33:

- 1. Refer to Section 3.9 for the definition of the 2 byte standard timing identification codes.
- 2. It is permissible to redefine more than one 18 byte data block as Standard Timing Identifiers.
- 3. Additional Standard Timings may be stored in an extension block. Refer to VESA VTB-EXT Standard for more information.

#### 3.10.3.7 Color Management Data Definition (tag #F9h)

A shorthand method of defining color management data may be listed in the Color Management Data Descriptor (Tag #F9h). This requires the storage of the Display Color Management polynomial coefficients. The polynomial coefficients shall be stored as 2 byte codes (16 bits total) --- Least Significant Byte (LSB) is stored first. Refer to Table 3.34.

| Byte<br>#         | Value                 | Color Management Data Descriptor Definitions      |                                 |  |  |
|-------------------|-----------------------|---------------------------------------------------|---------------------------------|--|--|
| $0 \rightarrow 4$ | (00 00 00 F9 00)h     | Color Management Data Descriptor Tag Number (F9h) |                                 |  |  |
| 5                 | 03h                   | Version Number: Set to 03h.                       | (All other values are reserved) |  |  |
| 6                 | $00h \rightarrow FFh$ | Red a <sub>3</sub> Least Significant Byte (LSB)   |                                 |  |  |
| 7                 | $00h \rightarrow FFh$ | Red a <sub>3</sub> Most Significant Byte (MSB)    |                                 |  |  |
| 8                 | $00h \rightarrow FFh$ | Red a <sub>2</sub> LSB                            |                                 |  |  |
| 9                 | $00h \rightarrow FFh$ | Red a <sub>2</sub> MSB                            |                                 |  |  |
| 10                | $00h \rightarrow FFh$ | Green a <sub>3</sub> LSB                          |                                 |  |  |
| 11                | $00h \rightarrow FFh$ | Green a <sub>3</sub> MSB                          |                                 |  |  |
| 12                | $00h \rightarrow FFh$ | Green a <sub>2</sub> LSB                          |                                 |  |  |
| 13                | $00h \rightarrow FFh$ | Green a <sub>2</sub> MSB                          |                                 |  |  |
| 14                | $00h \rightarrow FFh$ | Blue a <sub>3</sub> LSB                           |                                 |  |  |
| 15                | $00h \rightarrow FFh$ | Blue a <sub>3</sub> MSB                           |                                 |  |  |
| 16                | $00h \rightarrow FFh$ | Blue a <sub>2</sub> LSB                           |                                 |  |  |
| 17                | $00h \rightarrow FFh$ | Blue a <sub>2</sub> MSB                           |                                 |  |  |

| Table 3.34 – Color M | Management Data | <b>Descriptor Definition</b> |
|----------------------|-----------------|------------------------------|
|----------------------|-----------------|------------------------------|

**Note**: More information on deriving the Display Color Management polynomial coefficients is available in the VESA DCM Standard, Version 1; January 6, 2003.

#### 3.10.3.8 CVT 3 Byte Code Descriptor Definition (tag #F8h)

Coordinated Video Timings (CVT) may be defined (optional) in the CVT 3 Byte Code Descriptor (Tag #F8h). The 3 Byte CVT Codes shall be used to define video timing modes that include horizontal and vertical pixel formats that are not defined in the VESA DMT, Version 1.0, Revision 10 or later. The CVT 3 Byte Code Descriptor section may be divided to support up to 4 timing sub-blocks - each is 3 bytes long (12 bytes total). Unused bytes shall be padded with 00h. Table 3.35 provides a description of the 3 byte CVT codes. Refer to VESA CVT Standard, Version 1.1, September 10, 2003 for more information on CVT definitions. Refer to VESA VTB-EXT Standard for more information on CVT 3 Byte Codes.

| Byte<br>#           | Value             |   |    |                                                |      |                       |     |                                                 | CVT 3 Byte Code Descriptor Definition                               |
|---------------------|-------------------|---|----|------------------------------------------------|------|-----------------------|-----|-------------------------------------------------|---------------------------------------------------------------------|
| $0 \rightarrow 4$   | (00 00 00 F8 00)h |   |    |                                                |      | 00)                   | h   |                                                 | CVT 3 Byte Code Descriptor Tag Number (F8h)                         |
| 5                   |                   |   |    | 01                                             | h    |                       |     |                                                 | Version Number (All other values are reserved)                      |
| $6 \rightarrow 8$   |                   |   |    |                                                |      | CV                    | T 3 | Byte                                            | e Code Descriptor with the #1 (Highest) Priority                    |
|                     | 7                 | 6 | 5  | 4                                              | 3    | 2                     | 1   | 0                                               | Eight Least Significant Bits (Bit Definitions):                     |
|                     |                   |   |    |                                                |      |                       |     |                                                 | 12 Bit Value Stored = $[(Addressable Lines per Field \div 2) - 1]$  |
| 6                   | n                 | n | n  | n                                              | n    | n                     | n   | n                                               | 8 least significant bits of 12 bit Addressable Lines                |
|                     | 0                 | 0 | 0  | 0                                              | 0    | 0                     | 0   | 0                                               | 00h is Reserved: Do not use.                                        |
|                     | 7                 | 6 | 5  | 4                                              | -    | -                     |     | -                                               | Four Most Significant Bits (Bit Definitions):                       |
|                     | n                 | n | n  | n                                              |      |                       |     |                                                 | 4 most significant bits of 12 bit Addressable Lines                 |
|                     |                   |   |    |                                                | 3    | 2                     | -   | -                                               | Aspect Ratio:                                                       |
|                     |                   |   |    |                                                | 0    | 0                     |     |                                                 | 4 : 3 AR                                                            |
| 7                   | -                 | - | -  | -                                              | 0    | 1                     | _   | -                                               | 16 : 9 AR                                                           |
| ,                   | -                 | - | _  | _                                              | 1    | 0                     | _   | -                                               | 16 : 10 AR                                                          |
|                     | -                 | - | -  | -                                              | 1    | 1                     | -   | -                                               | 15 : 9 AR                                                           |
|                     |                   | _ | _  |                                                | 1    | 1                     | 1   | 0                                               | Reserved Bits:                                                      |
|                     |                   |   |    |                                                |      |                       | 0   | 0                                               | Bits 1, 0 shall be set to '00'. All other values shall not be used. |
|                     | 7                 | _ | _  |                                                |      |                       | U   | 0                                               | Reserved Bit:                                                       |
|                     | 0                 |   |    |                                                |      |                       |     |                                                 | Bit 7 shall be set to '0'. The value '1' shall not be used.         |
|                     | 0                 | 6 | 5  |                                                |      |                       |     |                                                 | Preferred Vertical Rate:                                            |
|                     | 0                 | 0 | 0  |                                                |      |                       |     |                                                 | 50 Hz                                                               |
|                     |                   |   |    | -                                              | -    | -                     | -   | -                                               | 60 Hz                                                               |
|                     | 0                 | 0 | 1  | -                                              | -    | -                     | -   | -                                               |                                                                     |
| 0                   | 0                 | 1 | 0  | -                                              | —    | _                     | -   | _                                               | 75 Hz                                                               |
| 8                   | 0                 | 1 | 1  | _                                              | -    | -                     | 1   |                                                 | 85 Hz                                                               |
|                     | 0                 |   |    | 4                                              | 3    | 2                     | 1   | 0                                               | Supported Vertical Rate and Blanking Style                          |
|                     | 0                 | — | _  | 1                                              | -    | _                     | -   | _                                               | 50 Hz with standard blanking (CRT style) is supported               |
|                     | 0                 | — | _  | —                                              | 1    | -                     | -   | _                                               | 60 Hz with standard blanking (CRT style) is supported               |
|                     | 0                 | — | -  | —                                              | _    | 1                     | _   | _                                               | 75 Hz with standard blanking (CRT style) is supported               |
|                     | 0                 | _ | _  | _                                              | _    | _                     | 1   | _                                               | 85 Hz with standard blanking (CRT style) is supported               |
|                     | 0                 | _ | _  | _                                              | _    | _                     |     | 1                                               | 60 Hz with reduced blanking (as per CVT Standard) is supported      |
| $9 \rightarrow 11$  |                   |   |    |                                                |      |                       | C   | /13                                             | Byte Code Descriptor with the #2 Priority                           |
|                     |                   |   | (( | 00 00                                          | 00 ( | )h                    |     |                                                 | If not defined then enter (00 00 00)h.                              |
| 9                   |                   |   |    | • •                                            | •    |                       |     |                                                 | Refer to Byte 6 above                                               |
| 10                  |                   |   |    | •                                              | •    |                       |     |                                                 | Refer to Byte 7 above                                               |
| 11                  |                   |   |    |                                                |      |                       | 01  |                                                 | Refer to Byte 8 above                                               |
| $12 \rightarrow 14$ |                   |   |    |                                                |      | 1.                    | C   | /13                                             | Byte Code Descriptor with the #3 Priority                           |
|                     | (00 00 00)h       |   |    |                                                | jn   | _                     |     | If not defined then enter (00 00 00)h.          |                                                                     |
| 12                  | •••               |   |    |                                                |      | Refer to Byte 6 above |     |                                                 |                                                                     |
| 13<br>14            | •••               |   |    | Refer to Byte 7 above<br>Refer to Byte 8 above |      |                       |     |                                                 |                                                                     |
| 14                  | OVT 3 Parts       |   |    |                                                | CV   | Т 2                   | Ry# | e Code Descriptor with the #4 (Lowest) Priority |                                                                     |
| $15 \rightarrow 17$ |                   |   | (( | 00 00                                          | 00   |                       | 13  | Буt                                             | If not defined then enter (00 00 00)h.                              |
| 15                  |                   |   | (( |                                                |      | )11                   |     |                                                 | Refer to Byte 6 above                                               |
| 15                  |                   |   |    |                                                |      |                       |     |                                                 | Refer to Byte 7 above                                               |
| 10                  |                   |   |    |                                                |      |                       |     |                                                 | Refer to Byte 8 above                                               |
| 1/                  |                   |   |    |                                                |      |                       |     |                                                 |                                                                     |

Notes for Table 3.35:

1. The highest priority CVT 3 byte codes (listed in the CVT 3 Byte Code Descriptor) shall be stored in the first CVT descriptor block (bytes 6, 7 & 8). The lowest priority CVT format shall be stored in the last CVT descriptor block (bytes 15, 16 & 17).

- 2. Together the number of "Addressable Lines per Field" and the aspect ratio determine the pixel format.
- 3. Addressable vertical line count is used instead of addressable horizontal pixel count due to the following:
  - 3.1 Using vertical line count enables a compact way of expressing multiple aspect ratios. For example a fixed format 16 : 9 AR display can center and display 4 : 3 AR and 16 : 10 AR timing which have the same number of addressable vertical lines without the need for scaling.
  - 3.2 Due to cell width rounding of the horizontal resolution, it may not be possible to always accurately determine the correct number of addressable vertical lines. For example: 1360x768 is a recognized 16 : 9 AR format. If the vertical resolution is calculated using the horizontal resolution a value of 765 is obtained, whereas using the vertical resolution and rounding to nearest cell width gives 1360.

The addressable horizontal resolution (HAdd) is extracted by:

 $HAdd = 8 \times \{ROUNDDOWN [(VAdd \times Aspect Ratio) \div 8]\}$ 

Where: Aspect Ratio = 4 : 3, 16 : 9 or 16 : 10 (as specified in 3-byte CVT descriptor block)ROUNDDOWN function rounds down to the nearest integer

Note: Timing that does not obey this rule is not CVT compliant.

- 4. Each 3-byte CVT descriptor block allows the display to signal support for a single display format defined by the addressable vertical line count and aspect ratio. Within that block it is possible to indicate all CVT refresh rates supported at that format. The vertical refresh rates that may be supported include: 50Hz, 60Hz, 75Hz and 85Hz and 60Hz (Reduced Blanking).
- 5. Any coordinated video timing outside of the monitor range limits (defined in BASE EDID) may cause the display to enter a self-protection mode (Out of Range). The host shall always verify that an intended video timing (listed in BASE EDID) falls within the display range limits before the timing is applied to the display.
- 6. The 'Preferred Field Rate' declares one of the 'Supported Field Rates' as preferred for the given format.
- 7. A Preference for 60Hz designates either 60Hz standard blanking or reduced blanking, whichever is supported. If both are supported, then reduced blanking shall be preferred. The 'Preferred Field Rate' (listed in Bits 5 & 6, Byte 8) shall also be listed in the 'Supported Field Rate' section (listed in Bits 0 → 4, Byte 8).

#### 3.10.3.9 Established Timings III Descriptor Definition (tag #F7h)

Table 3.36 defines the Established Timings III Descriptor. Support for Established Timings III is optional. Established Timings III lists those Display Monitor Timings (DMTs) are defined in the VESA Monitor Timing Standard but are not included in Established Timings I or Established Timings II (refer to Table 3.18 in Section 3.8). Note that Established Timings III is a bit set table of supported DMTs and cannot define the video timing priority (order of importance).

| Byte #              |   |   |       | Va         | lue  |      |   |   | Established Timings III Support Definitions               |
|---------------------|---|---|-------|------------|------|------|---|---|-----------------------------------------------------------|
| $0 \rightarrow 4$   |   | ( | (00 0 | 00 00      | ) F7 | 00)ł | 1 |   | Established Timings III Descriptor Tag Number (F7h)       |
| 5                   |   |   | `     | 0 <i>A</i> | ۱h   |      |   |   | Revision Number (All other values are reserved)           |
|                     | 7 | 6 | 5     | 4          | 3    | 2    | 1 | 0 | Bit Definitions:                                          |
|                     | 1 | _ | _     | _          | _    | _    | _ | _ | 640 x 350 @ 85 Hz                                         |
|                     | _ | 1 |       | _          | _    |      | _ |   | 640 x 400 @ 85 Hz                                         |
|                     |   | _ | 1     |            |      |      |   |   | 720 x 400 @ 85 Hz                                         |
| 6                   | _ | _ | _     | 1          | _    | _    | _ | _ | 640 x 480 @ 85 Hz                                         |
| 6                   | _ | _ | _     | _          | 1    | _    | _ | _ | 848 x 480 @ 60 Hz                                         |
|                     | _ | _ | _     | _          | _    | 1    | _ | _ | 800 x 600 @ 85 Hz                                         |
|                     | _ | _ | _     | _          | _    | _    | 1 | _ | 1024 x 768 @ 85 Hz                                        |
|                     | _ | _ | _     | _          | _    | _    | _ | 1 | 1152 x 864 @ 75 Hz                                        |
|                     | 1 | _ | _     | _          | _    | _    | _ | _ | 1280 x 768 @ 60 Hz (RB) Note: (RB) means reduced blanking |
|                     |   | 1 | _     | _          | _    | _    | _ | _ | 1280 x 768 @ 60 Hz                                        |
|                     | _ | _ | 1     | _          | _    | _    | _ | _ | 1280 x 768 @ 75 Hz                                        |
| 7                   | _ | _ | _     | 1          | _    | _    | _ | _ | 1280 x 768 @ 85 Hz                                        |
| ,                   | _ | _ | _     | _          | 1    | _    | _ | _ | 1280 x 960 @ 60 Hz                                        |
|                     | _ | _ | _     | _          | _    | 1    | _ | _ | 1280 x 960 @ 85 Hz                                        |
|                     | _ | _ | _     | _          | _    | _    | 1 | _ | 1280 x 1024 @ 60 Hz                                       |
|                     | - |   | _     |            | _    | _    | _ | 1 | 1280 x 1024 @ 85 Hz                                       |
|                     | 1 | _ | _     | _          | _    | _    | _ | _ | 1360 x 768 @ 60 Hz                                        |
|                     | - | 1 | -     | _          | _    | _    | _ | _ | 1440 x 900 @ 60 Hz (RB)                                   |
|                     | - | _ | 1     | -          | _    | _    | _ | _ | 1440 x 900 @ 60 Hz                                        |
| 8                   | - | _ | -     | 1          | 1    | _    | _ | _ | 1440 x 900 @ 75 Hz                                        |
|                     | _ | _ | _     | _          | 1    | -    | _ | _ | 1440 x 900 @ 85 Hz                                        |
|                     | - | _ | _     | _          | -    | 1    | 1 | _ | 1400 x 1050 @ 60 Hz (RB)                                  |
|                     | _ | _ | _     | _          | _    | _    | 1 | - | 1400 x 1050 @ 60 Hz                                       |
|                     | - |   | -     |            |      | _    |   | 1 | 1400 x 1050 @ 75 Hz                                       |
|                     | 1 | 1 | _     | _          | _    | -    | _ | - | 1400 x 1050 @ 85 Hz                                       |
|                     | - | 1 | 1     | -          | _    | -    | - | _ | 1680 x 1050 @ 60 Hz (RB)                                  |
|                     | _ | _ | 1     | 1          | _    | _    | - | _ | 1680 x 1050 @ 60 Hz<br>1680 x 1050 @ 75 Hz                |
| 9                   | - | - | -     | 1          | 1    | -    | - | - | 1680 x 1050 @ 85 Hz                                       |
|                     | - | - | -     | -          | 1    | 1    | - | - | 1600 x 1200 @ 60 Hz                                       |
|                     | - | _ | _     | -          | _    | 1    | 1 | _ | 1600 x 1200 @ 65 Hz                                       |
|                     | - | _ | _     | -          | -    | -    | 1 | 1 | 1600 x 1200 @ 70 Hz                                       |
|                     | 1 | _ | -     | -          | -    | -    | - | 1 | 1600 x 1200 @ 75 Hz                                       |
|                     | 1 | 1 | -     | -          | _    | -    | - | - | 1600 x 1200 @ 85 Hz                                       |
|                     | - | 1 | 1     | _          | _    | -    | - | _ | 1792 x 1344 @ 60 Hz                                       |
|                     | _ | _ | -     | 1          | -    | -    | - | _ | 1792 x 1344 @ 75 Hz                                       |
| 10                  | - | _ | _     | -          | 1    | -    | - | _ | 1856 x 1392 @ 60 Hz                                       |
|                     | - | - | -     | -          |      | 1    | - | _ | 1856 x 1392 @ 75 Hz                                       |
|                     |   |   | _     | _          |      | -    | 1 | _ | 1920 x 1200 @ 60 Hz (RB)                                  |
|                     | - | - | -     | -          | _    | -    | - | 1 | 1920 x 1200 @ 60 Hz                                       |
|                     | 1 | - | _     | _          | 0    | 0    | 0 | 0 | 1920 x 1200 @ 75 Hz                                       |
| ,                   | _ | 1 | -     | -          | 0    | 0    | 0 | 0 | 1920 x 1200 @ 85 Hz                                       |
| 11                  | - |   | 1     | _          | 0    | 0    | 0 | 0 | 1920 x 1440 @ 60 Hz                                       |
|                     | _ | - |       | 1          | 0    | 0    | 0 | 0 | 1920 x 1440 @, 75 Hz                                      |
|                     |   |   |       |            | 0    | 0    | 0 | 0 | Reserved Bits: Shall be set to '0000'.                    |
| $12 \rightarrow 17$ |   |   |       | 00         | )h   |      |   |   | Reserved Byte: Shall be set to '00h'.                     |

| Table 3.36 – Established T | Fimings III Descriptor <b>D</b> | Definition |
|----------------------------|---------------------------------|------------|
|----------------------------|---------------------------------|------------|

Notes for Table 3.36:

- 1. Support for the DMTs listed in Table 3.36 is indicated by setting the appropriate bit to '1'. DMTs that are not supported are indicated by a '0'.
- 2. All timings listed Table 3.36 include normal blanking except those timings that are label as reduced blanking (RB).
- 3. For more information on refer to the newest release of the VESA DMT.

#### 3.10.3.10 Unused – Reserved Data Tag Number (Tags #11h to #F6h)

Data Tag Numbers (#11h to #F6h) are currently undefined and are reserved (they shall not be used). In a future revision to the E-EDID Standard, VESA may define some of these data tag numbers as new descriptor blocks.

| Byte<br># | Value     | Reserved Data Tag Number Definition   |  |  |  |
|-----------|-----------|---------------------------------------|--|--|--|
| 3         | 11h → F6h | Reserved Data Tag Numbers: Do Not Use |  |  |  |

### 3.10.3.11 Dummy Descriptor Definition (Tag #10h)

The Dummy Descriptor (Tag #10h) shall be used to indicate that the descriptor space is unused. The first 5 bytes are defined in table 3.23. Table 3.38 provides a description of the Dummy Descriptor.

| Byte<br>#          | Value                 | Dummy Descriptor Definition       |
|--------------------|-----------------------|-----------------------------------|
| $0 \rightarrow 4$  | (00 00 00 10 00)h     | Dummy Descriptor Tag Number (10h) |
| 5 17               | 00h                   | All Bytes filled with '00h'       |
| $5 \rightarrow 17$ | $01h \rightarrow FFh$ | Reserved: Shall Not Be Used.      |

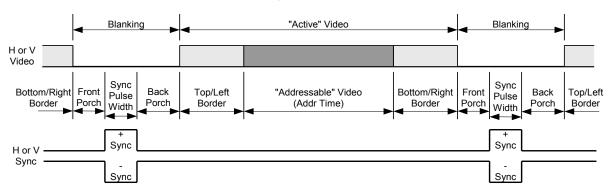
#### 3.10.3.12 Manufacturer Specified Data Tag Numbers (Tags #00h to #0Fh)

Data Tag Numbers (#00h to #0Fh) are reserved for manufacturer specific descriptor definitions. Manufacturers may use these data tag numbers to define custom descriptors. However, manufacturers shall use the first 5 bytes as defined in Table 3.23. Table 3.39 provides a description of the Manufacturer Specified Data Descriptor.

| Byte<br>#          | Value                 | Manufacturer Specified Data Descriptor Definition                     |
|--------------------|-----------------------|-----------------------------------------------------------------------|
| $0 \rightarrow 4$  | (00 00 00 nn 00)h     | Manufacturer Specified Data Tag Numbers (nn = $00h \rightarrow 0Fh$ ) |
| $5 \rightarrow 17$ | $00h \rightarrow FFh$ | Manufacturer specifies the data stored in Bytes $5 \rightarrow 17$    |

#### 3.11 EXTENSION Flag and Checksum

The EXTENSION Flag and Checksum are required elements in EDID data structure version 1, revision 4. They are defined in Table 3.40.


| Address | Value                 | <b>EXTENSION Flag &amp; Checksum Definitions</b> |
|---------|-----------------------|--------------------------------------------------|
| 7Eh     | $00h \rightarrow FFh$ | EXTENSION Flag:                                  |
| 7Fh     | $00h \rightarrow FFh$ | Checksum:                                        |

Notes for Table 3.40:

- 1. The EXTENSION Flag contains the number of EXTENSION Blocks (including optional Block Map/s) that follow the BASE EDID. Range is 0 (00h) to 255 (FFh).
- 2. The Checksum Byte (at address **7Fh**) shall contain a value such that a checksum of the entire 128-byte BASE EDID equals 00h.
- 3. The host (source) shall perform checksum error checking by adding (using modulo 256) all 128 hexadecimal bytes in the BASE EDID. If the result of the addition is '00h', then the EDID contents are probably valid.

## 3.12 Note Regarding Borders

This section is included to provide a clear definition of the video timing parameters listed in Table 3.22. This section also provides a frame of reference for the use of borders in detailed timings. The use of borders goes back to the early days of the PC industry (CGA, EGA, VGA, etc.). Today, borders are not in common use on personal computers. There are exceptions, for example, a widescreen (letterbox) video format in a 4 : 3 AR frame (e.g. DVD).



Video Timing Parameter Definitions

Definitions of Terms:

• Horizontal Addressable Video  $\rightarrow$  The time between the end of the Left Border and the beginning of the Right Border

• Horizontal Blanking  $\rightarrow$  The time between the end of the Right Border and the beginning of the Left Border --- includes the Horizontal Front Porch time, the Horizontal Sync Pulse Width time and the Horizontal Back Porch time

• Horizontal Front Porch  $\rightarrow$  The time between the end of the Right Border and the beginning of the Horizontal Sync Pulse

• Horizontal Left Border  $\rightarrow$  The time between the end of the Horizontal Blanking period and the beginning of the Horizontal Addressable Video region

• Horizontal Right Border  $\rightarrow$  The time between the end of the Horizontal Addressable Video region and the beginning of the Horizontal Blanking period

• Horizontal Sync Pulse Width  $\rightarrow$  The time between the end of the Horizontal Front Porch and the beginning of the Horizontal Back Porch

• Horizontal Back Porch  $\rightarrow$  The time between the end of the Horizontal Sync Pulse and the beginning of the Left Border

• Horizontal Active Video  $\rightarrow$  The sum of the Horizontal Left Border time, the Horizontal Addressable Video time and the Horizontal Right Border time

• Vertical Addressable Video  $\rightarrow$  The time between the end of the Top Border and the beginning of the Bottom Border

• Vertical Blanking  $\rightarrow$  The time between the end of the Bottom Border and the beginning of the Top Border --- includes the Vertical Front Porch time, the Vertical Sync Pulse Width time and the Vertical Back Porch time

• Vertical Front Porch  $\rightarrow$  The time between the end of the Bottom Border and the beginning of the Vertical Sync Pulse

• Vertical Top Border  $\rightarrow$  The time between the end of the Vertical Blanking period and the beginning of the Vertical Addressable Video region

◆ Vertical Bottom Border → The time between the end of the Vertical Addressable Video region and the beginning of the Vertical Blanking period

◆ Vertical Sync Pulse Width → The time between the end of the Vertical Front Porch and the beginning of the Vertical Back Porch

• Vertical Back Porch  $\rightarrow$  The time between the end of the Vertical Sync Pulse and the beginning of the Top Border

• Vertical Active Video  $\rightarrow$  The sum of the Vertical Top Border time, the Vertical Addressable Video time and the Vertical Bottom Border time

#### Some Additional Comments:

Both the horizontal and vertical border sizes are for one side only. (i.e. the actual number of pixels or lines taken up by both borders is twice the value listed in Table 3.21)

Borders are assumed to be symmetric for the detail timing block definition defined in Table 3.21. This is not true in the VESA DMT timing definitions.

# 4. EDID Extensions

Extensions to the base 128-byte EDID structure (block 0) are defined in separate VESA Standard documents.

At the time that this standard was written, the following extensions were in existence. Refer to the individual standards or specifications for more information:

- CEA-861 Series Timing Extension
- Video Timing Block Extension (VTB-EXT)
- Display Information Extension (DI-EXT)
- Localized String Extension (LS-EXT)
- Digital Packet Video Link Extension (DPVL-EXT)

# 5. Timing Information Priority Order

The BASE EDID data structure may contain four different types of discrete timing mode information, Established, Standard, Preferred and Detailed. There may also be information required to support GTF and/or CVT compliant displays.

The display EDID data shall be defined with the understanding that the host shall evaluate and support the timing modes in the following order:

| PRIORITY | Locations of All Timing Modes listed in BASE EDID and EXTENSIONS                                                                        |
|----------|-----------------------------------------------------------------------------------------------------------------------------------------|
| 1        | The 'Preferred Timing Mode' as defined in BASE EDID. See Note 2.                                                                        |
| 2        | Other 'Detailed Timing Modes' in the order listed in BASE EDID. See Note 3.                                                             |
| 3        | Any additional 'Detailed Timing Modes' (priority is in the order listed) in optional EXTENSION Blocks to the BASE EDID See Note 4.      |
| 4        | Any optional 3 Byte CVT Codes (defined in optional Display Descriptors) listed in BASE EDID or an optional Extension Block. See Note 5. |
| 5        | 'Standard Timings' listed in BASE EDID and in optional EXTENSION Blocks. See Note 6.                                                    |
| 6        | Additional Timing Mode Information: Established Timings I, II & III, Default GTF, GTF<br>Secondary Curve & CVT. See Note 7.             |
| 7        | BASE VIDEO MODE (Default VGA). See Note 8.                                                                                              |

Table 5.1 – E-EDID Timing Mode Priority

Notes for Table 5.1:

- 1) The expression "Priority is in the order listed" means that the timing mode nearest to the lowest address of the EDID structure (BASE or EXTENSION) in which the timing is contained has the highest priority, the timing at the second lowest address has the second highest priority, etc.
- The first 18 Byte Descriptor Block (addresses 36h → 47h) shall contain the "Preferred Timing Mode (PTM)" - the PTM has the highest priority. For more information, refer to Section 3.10.
- 3) Other 'Detailed Timing Modes' refers to the Detailed Timings stored in the Second (addresses 48h → 59h), Third (addresses 5Ah → 6Bh) and Fourth (addresses 6Ch → 7Dh) 18 Byte Descriptors in BASE EDID. 18 Byte Descriptors may contain Display Descriptors. Some of these Display Descriptors may contain video timing information such as:
  - 3.1) Display Range Limits (Tag #FDh) with default GTF support, GTF Secondary Curve support or CVT support. For more information, refer to Section 3.10.3
  - 3.2) Standard Timings 9  $\rightarrow$  14 (Tag #FAh). For more information, refer to Section 3.10.3.6
  - 3.3) 3 Byte CVT Codes (Tag #F8h). For more information, refer to Section 3.10.3.8

Detailed Timings have a higher priority compared to the timing definitions listed above  $(3.1 \rightarrow 3.3)$  and the Detailed Timings are listed (in BASE EDID) in the order of importance. Timing priorities for the timing definitions listed above  $(3.1 \rightarrow 3.3)$  are defined in one or more of the following notes.

- 4) Any additional 'Detailed Timing Modes' (listed in 18 Byte Descriptor Blocks) defined in optional EXTENSION Blocks are next in the priority order list. The priority order is in the order listed. Optional EXTENSION Blocks may include: VTB-EXT, CEA861, etc. If the standard that defines the contents of the EXTENSION Block includes a priority order definition that is in conflict, then the EXTENSION Block Standard takes precedence.
- 5) The next timing mode definition in the priority order list is the optional 3 Byte CVT Codes. The 3 Byte CVT Codes shall be used to define video timing modes that include horizontal and vertical pixel formats that are not defined in the VESA DMT. The 3 Byte CVT Codes may be defined in Display Descriptors which can be stored in BASE EDID or optional EXTENSION Blocks (for example: VTB-EXT, etc.). The priority order of the 3 Byte CVT Codes is in the order listed (first the BASE EDID followed by the EXTENSION Block). If the standard that defines the contents of the EXTENSION Block includes a priority order definition that is in conflict, then the EXTENSION Block Standard takes precedence.
- 6) Standard Timings (using 2 byte codes) are next in the priority order list. Up to 8 Standard Timings may be listed at addresses 26h → 35h in the BASE EDID (Block 0) --- for more information, refer to section 3.9. If more than 8 Standard Timings are required, then up to six (9 → 14) additional Standard Timings may be listed in the Standard Timing Display Descriptor (Tag #FAh). The Standard Timing Display Descriptor may be located in the BASE EDID or in an optional EXTENSION Block (for example: VTB-EXT). For more information, refer to Section 3.10.3.6. If more than 14 Standard Timings are required, then multiple Standard Timing Display Descriptors may be used. If the standard that defines the contents of the EXTENSION Block includes a priority order definition that is in conflict, then the EXTENSION Block Standard takes precedence.
- 7) Additional Timing Mode Information includes Established Timings I & II & III, Default GTF, GTF Secondary Curve and CVT.
  - 7.1) Established Timings are bit set data fields that indicate the display's support for various DMTs defined in VESA DMT Version 1.0, Revision 10; October 29, 2004. Established Timings cannot define a priority order. Established Timings I & II are listed in BASE EDID at addresses 23h & 24h. For more information, refer to Section 3.8. Established Timings III is defined in an optional Display Descriptor (Tag #F7h). This optional Display Descriptor may be defined in BASE EDID or in an EXTENSION Block. A source may use Established Timings I, II & III to define a list of video timing modes that are supported by the display. The source cannot determine a priority order for these video timing modes.
  - 7.2) VESA does not recommend using the Generalized Timing Formula (GTF- using default parameters or secondary curve) for new designs. VESA recommends using CVT. Refer to Section 3.10.3.3.
- 8) The BASE Video Mode for Windows based Personal Computers is 640x480 @ 60 Hz (VGA). Note that some computer manufacturers (not Windows-based) have elected to define the BASE Video Mode to be some other video timing mode (not VGA).

# 6. APPENDIX A - Sample EDIDs

Appendix A includes 3 sample EDID data structures which are based on the E-EDID Standard Release A, Revision 2 using the version 1, revision 4 data structure definitions. These examples include: an IT desktop display; a DTV display; and a display that supports both PC and CE timing modes. These are examples only and do not represent any particular product from any particular manufacturer.

# 6.1 EXAMPLE 1: Sample BASE EDID (Block 0) for an LCD Desktop IT Display

Example 1 is a sample base EDID (block 0) data structure a typical LCD Desktop Display that supports PC timing modes. The following is a list of the main features:

1. 21" LCD Display (4 : 3 aspect ratio) built by the ABC Monitor Company --- Model Name is "ABC LCD21".

2. The Native Format of the display device is 1600x1200@60Hz (PC timing).

3. Preferred Mode is 1600x1200@60Hz (PC timing) using a VGA video input.

4. Supports several PC video timing modes.

5. This display is not sRGB compliant.

6. Display supports DPM power savings mode.

7. Supports CVT - supports continuous frequency inputs -Horizontal Frequency:  $30 \sim 110$  kHz; Vertical Frequency:  $50 \sim 90$  Hz.

8. Sample data structure includes: a preferred timing mode; a monitor range limits descriptor with CVT support information; established timings III; and a model name descriptor.

| Address<br>/Offset | Value<br>HEX | Function<br>Description                | Value<br>BIN | Value<br>DEC | Notes             |
|--------------------|--------------|----------------------------------------|--------------|--------------|-------------------|
|                    |              | BASE EDID (Block 0)                    |              |              |                   |
| 00                 | 00           | Tr Header:                             | 00000000     | 0            | See Section 3.3   |
| 01                 | FF           | 4                                      | 11111111     | 255          |                   |
| 02                 | FF           | 4                                      | 11111111     | 255          |                   |
| 03                 | FF           | 4                                      | 11111111     | 255          |                   |
| 04                 | FF           | 4                                      | 11111111     | 255          |                   |
| 05                 | FF           | 4                                      | 11111111     | 255          |                   |
| 06                 | FF           | 4                                      | 11111111     | 255          |                   |
| 07                 | 00           |                                        | 00000000     | 0            |                   |
| 08                 | 04           | π "ABC" – <u>ISA PNPID</u>             | 00000100     | 4            | See Section 3.4.1 |
| 09                 | 43           | ال <u>Manufacturer's Code Name</u>     | 01000011     | 67           |                   |
| 0A                 | 06           | π "F206" – <u>ID Product Code</u>      | 00000110     | 6            | See Section 3.4.2 |
| 0B                 | F2           |                                        | 11110010     | 242          |                   |
| 0C                 | 01           | π "00000001" – <u>ID Serial Number</u> | 00000001     | 1            | See Section 3.4.3 |
| 0D                 | 00           |                                        | 00000000     | 0            |                   |
| 0E                 | 00           |                                        | 00000000     | 0            |                   |
| 0F                 | 00           | LI                                     | 00000000     | 0            |                   |
| 10                 | 01           | $= 1^{st} Week of Manufacture$         | 00000001     | 1            | See Section 3.4.4 |
| 11                 | 11           | = "2007"- <u>Year of Manufacture</u>   | 00010001     | 17           |                   |
| 12                 | 01           | = "1" EDID Version Number              | 00000001     | 1            | See Section 3.5   |
| 13                 | 04           | = "4" <u>EDID Revision Number</u>      | 00000100     | 4            |                   |

| Address | Value    | Function                                                                                                                                                                                                                                                                                                                                                | Value    | Value |                                        |
|---------|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-------|----------------------------------------|
| /Offset | HEX      | Description                                                                                                                                                                                                                                                                                                                                             | BIN      | DEC   | Notes                                  |
| 14      | 0F<br>2B | Video Input Definition<br>7. Analog Video Input,<br>6-5. 0.700, 0.300 (1.000 Vp-p),<br>4. Blank Level = Black Level,<br>3. Separate Syncs is supported,<br>2. Composite Sync is supported,<br>1. Sync on Green is supported,<br>0. Vsync Serration is supported.<br>= Max Hor. Image Size is 43 cm.                                                     | 00001111 | 15    | See Section 3.6.1<br>See Section 3.6.2 |
| 16      | 20       | $= \frac{Max Hor. Image Size}{Max Ver. Image Size}$ is 32 cm.                                                                                                                                                                                                                                                                                           | 00010000 | 32    | See Section 5.0.2                      |
| 10      | 78       | = Display Gamma is  2.2                                                                                                                                                                                                                                                                                                                                 | 01111000 | 120   | See Section 3.6.3                      |
| 18      | 2B       | <ul> <li>Feature Support Byte:</li> <li>7. Standby is not supported,</li> <li>6. Suspend is not supported,</li> <li>5. Active Off is supported,</li> <li>4-3. Display Type is RGB Color,</li> <li>2. sRGB is not supported,</li> <li>1. Preferred Timing Mode includes<br/>Native Pixel Format,</li> <li>0. Display is Continuous Frequency.</li> </ul> | 00101011 | 43    | See Section 3.6.4                      |
| 19      | 9C       | $\pi$ Display x,y                                                                                                                                                                                                                                                                                                                                       | 10011100 | 156   | See Section 3.7                        |
| 1A      | 68       | Thromaticity Coordinates:                                                                                                                                                                                                                                                                                                                               | 01101000 | 104   |                                        |
| 1B      | A0       | # Red x is 0.627                                                                                                                                                                                                                                                                                                                                        | 10100000 | 160   |                                        |
| 1C      | 57       | # Red y is 0.341                                                                                                                                                                                                                                                                                                                                        | 01010111 | 87    |                                        |
| 1D      | 4A       | H Green x is 0.292                                                                                                                                                                                                                                                                                                                                      | 01001010 | 74    |                                        |
| 1E      | 9B       | H Green y is 0.605                                                                                                                                                                                                                                                                                                                                      | 10011011 | 155   |                                        |
| 1F      | 26       | H Blue x is 0.149                                                                                                                                                                                                                                                                                                                                       | 00100110 | 38    |                                        |
| 20      | 12       | # Blue y is 0.072                                                                                                                                                                                                                                                                                                                                       | 00010010 | 18    |                                        |
| 21      | 48       | # White x is 0.283                                                                                                                                                                                                                                                                                                                                      | 01001000 | 72    |                                        |
| 22      | 4C       | White y is 0.297                                                                                                                                                                                                                                                                                                                                        | 01001100 | 76    |                                        |
| 23      | FF       | Supported Established Timings I include:<br>720x400@70Hz,<br>720x400@88Hz,<br>640x480@60Hz,<br>640x480@67Hz,<br>640x480@72Hz,<br>640x480@75Hz,<br>800x600@56Hz<br>800x600@60Hz                                                                                                                                                                          | 11111111 | 255   | See Section 3.8                        |
| 24      | FF       | Supported Established Timings II include<br>800x600@72Hz,<br>800x600@75Hz,<br>832x624@75Hz,<br>1024x768@60Hz,<br>1024x768@70Hz,<br>1024x768@75Hz,<br>1280x1024@75Hz                                                                                                                                                                                     | 11111111 | 255   |                                        |

| Address    | Value    | Function                                                               | Value     | Value |                       |
|------------|----------|------------------------------------------------------------------------|-----------|-------|-----------------------|
| /Offset    | HEX      | Description                                                            | BIN       | DEC   | Notes                 |
|            |          | Supported Manufacturer's Timings                                       |           |       | See Section 3.8       |
| 25         | 80       | include:                                                               | 1000000   | 128   |                       |
|            |          | L 1152x870@75Hz                                                        |           |       |                       |
| 26         | A9       | Standard Timings include:                                              | 10101001  | 169   | See Section 3.9       |
| 26<br>27   | A9<br>59 | <u>∓</u> 1600x1200@85Hz,                                               | 01011001  | 89    |                       |
| 27         | A9       | -                                                                      | 10101001  | 169   |                       |
| 28         | 4F       | 〒1600x1200@75Hz,                                                       | 01001111  | 79    |                       |
| 23<br>2A   | A9       |                                                                        | 101001111 | 169   |                       |
| 2A<br>2B   | 4A       | 1000x1200@/0112,                                                       | 01001010  | 74    |                       |
| 2B<br>2C   | A9       | $\pi$ 1600x1200@65Hz,                                                  | 10101001  | 169   |                       |
| 2C<br>2D   | 45       | □ ₩ 1000x1200@05112,                                                   | 01000101  | 69    |                       |
| 2D<br>2E   | 81       | $\overline{\pi}$ 1280x1024@85Hz,                                       | 10000001  | 129   |                       |
| 2E<br>2F   | 99       | 1 1200x102 (@05112,                                                    | 10000001  | 153   |                       |
| 30         | 81       | π 1280x1024@60Hz,                                                      | 10000001  | 129   |                       |
| 31         | 80       | , <b>1</b> ,                                                           | 10000000  | 128   |                       |
| 32         | 61       | ]] 1024x768@85Hz,                                                      | 01100001  | 97    |                       |
| 33         | 59       |                                                                        | 01011001  | 89    |                       |
| 34         | 45       | 〒 800x600@85Hz,                                                        | 01000101  | 69    |                       |
| 35         | 59       |                                                                        | 01011001  | 89    |                       |
|            |          | First 18 Byte Data Block:                                              |           |       | See Section 3.10.2    |
| 36         | 48       | 〒 Pixel Clock                                                          | 01001000  | 72    | Preferred Timing Mode |
| 37         | 3F       | ≝ is 162.000 MHz.                                                      | 00111111  | 63    | is 1600x1200@60Hz.    |
| 38         | 40       |                                                                        | 01000000  | 64    | (per the VESA         |
| 39         | 30       | is 1600 pixels. Horizontal                                             | 00110000  | 48    | DMT Standard)         |
| 3A         | 62       | Hanking is 560 pixels.                                                 | 01100010  | 98    |                       |
| 3B         | B0       | Tr Vertical Addressable Video is                                       | 10110000  | 176   |                       |
| <b>3</b> C | 32       | 1200 lines. Vertical Blanking                                          | 00110010  | 50    |                       |
| 3D         | 40       | ⊥ is 50 lines.                                                         | 01000000  | 64    |                       |
| <b>3</b> E | 40       | $\overline{\Pi}$ Horizontal Front Porch is 64 pixels.                  | 01000000  | 64    |                       |
| 3F         | C0       | Horizontal Sync Pulse Width is 192 pix.                                | 11000000  | 192   |                       |
| 40         | 13       | - Vertical Front Porch is 1 line.                                      | 00010011  | 19    |                       |
| 41         | 00       | L Vertical Sync Pulse Width is 3 lines                                 | 00000000  | 0     |                       |
| 42         | AB       | $\overline{\mathbf{T}}$ Horizontal Addressable Image Size              | 10101011  | 171   |                       |
| 43         | 40       | is 427 mm. Vertical Addressable                                        | 01000000  | 64    |                       |
| 44         | 11       | Image Size is 320 mm.                                                  | 00010001  | 17    |                       |
| 45         | 00       | = Horizontal Border Size is 0 pixels.                                  | 00000000  | 0     |                       |
| 46         | 00       | = Vertical Border Size is 0 lines.                                     | 00000000  | 0     |                       |
| 47         | 15       | Timing is Non-Interlaced Video,                                        | 00011110  | 20    |                       |
| 47         | 1E       | L Stereo Video is not Support,<br>Digital Separate Syncs are required. | 00011110  | 30    |                       |
|            |          | - Digital Separate Syncs are required.                                 |           |       |                       |

| Address    | Value | Function                                                                                                                                           | Value    | Value |                         |
|------------|-------|----------------------------------------------------------------------------------------------------------------------------------------------------|----------|-------|-------------------------|
| /Offset    | HEX   | Description                                                                                                                                        | BIN      | DEC   | Notes                   |
|            |       | Second 18 Byte Data Block:                                                                                                                         |          |       | See Section 3.10.3.3    |
| 48         | 00    |                                                                                                                                                    | 00000000 | 0     | & Section 3.10.3.3.2    |
| 49         | 00    |                                                                                                                                                    | 00000000 | 0     | Display Range Limits    |
| 4A         | 00    |                                                                                                                                                    | 00000000 | 0     | Descriptor With CVT     |
| 4B         | FD    | = Display Range Limits Block Tag                                                                                                                   | 11111101 | 253   | Support Information     |
| 4C         | 00    | = Horiz. & Vert. Rate Offsets are zero.                                                                                                            | 00000000 | 0     |                         |
| 4D         | 32    | = Minimum Vertical Freq = 50 Hz                                                                                                                    | 00110010 | 50    |                         |
| <b>4</b> E | 5A    | = <u>Maximum Vertical Freq</u> $=$ 90 Hz                                                                                                           | 01011010 | 90    |                         |
| <b>4</b> F | 1E    | = Minimum Horizontal Freq = 30 KHz                                                                                                                 | 00011110 | 30    |                         |
| 50         | 6E    | = <u>Maximum Horizontal Freq</u> = 110 KHz                                                                                                         | 01101110 | 110   |                         |
| 51         | 17    | = <u>Maximum Pixel Clock Freq</u> = 230 MHz                                                                                                        | 00010111 | 23    |                         |
| 52         | 04    | = Begin <u>CVT Support Information</u> :                                                                                                           | 00000100 | 4     |                         |
| 53         | 11    | = Compatible with CVT Version 1.1                                                                                                                  | 00010001 | 17    |                         |
| 54         | 00    | = <u>Maximum Pixel Clock Frequency</u><br>remains at 230 MHz.                                                                                      | 00000000 | 0     |                         |
| 55         | C8    | = <u>Maximum Active Pixels per Line</u> is 1600.                                                                                                   | 11001000 | 200   |                         |
| 56         | 90    | $ \begin{bmatrix} Supported Aspect Ratios include: \\ 4:3 AR, \\ 5:4 AR \end{bmatrix} $                                                            | 10010000 | 144   |                         |
| 57         | 00    | <u>I</u> <u>Preferred Aspect Ratio</u> is 4:3,<br><u>Standard CVT Blanking</u> is supported.                                                       | 00000000 | 0     |                         |
| 58         | 50    | I. & V. Stretch are supported<br>I. & V. Shrink are not supported.                                                                                 | 01010000 | 80    |                         |
| 59         | 3C    | = Preferred Refresh Rate is 60 Hz.                                                                                                                 | 00111100 | 60    |                         |
|            |       | Third 18 Byte Data Block:                                                                                                                          |          |       | See Section 3.10.3.9    |
| 5A         | 00    |                                                                                                                                                    | 00000000 | 0     | Established Timings III |
| 5B         | 00    |                                                                                                                                                    | 00000000 | 0     | Display Descriptor      |
| 5C         | 00    |                                                                                                                                                    | 00000000 | 0     |                         |
| 5D         | F7    | = Established Timings III Block Tag                                                                                                                | 11110111 | 247   |                         |
| 5E         | 00    |                                                                                                                                                    | 00000000 | 0     |                         |
| 5F         | 0A    | = VESA DMT Standard Version #10                                                                                                                    | 00001010 | 10    |                         |
| 60         | F7    | 640x350@85Hz,<br>640x400@85Hz,<br>720x400@85Hz,<br>640x480@85Hz,<br>800x600@85Hz,<br>1024x768@85Hz,<br>1152x864@75Hz are supported.                | 11110111 | 247   |                         |
| 61         | 0F    | 1280x960@60Hz,<br>1280x960@85Hz,<br>1280x1024@60Hz,<br>1280x1024@85Hz                                                                              | 00001111 | 15    |                         |
| 62         | 03    | <u>1400x1050@60Hz (Normal Blanking),</u><br>1400x1050@75Hz are supported.                                                                          | 00000011 | 3     |                         |
| 63         | 87    | $ \begin{bmatrix} 1400x1050@85Hz, \\ 1600x1200@60Hz, \\ 1600x1200@65Hz, \\ 1600x1200@70Hz are supported. \end{bmatrix} $                           | 10000111 | 135   |                         |
| 64         | C0    | $\overline{\underline{I}} \begin{array}{c} 1600 \times 1200 @ 75 \text{Hz}, \\ 1600 \times 1200 @ 85 \text{Hz} \text{ are supported.} \end{array}$ | 11000000 | 192   |                         |

| Address    | Value | Function                         | Value    | Value |                         |
|------------|-------|----------------------------------|----------|-------|-------------------------|
| /Offset    | HEX   | Description                      | BIN      | DEC   | Notes                   |
| 65         | 00    | 1920 Timings are not supported.  | 00000000 | 0     | See Section 3.10.3.9    |
| 66         | 00    | = Reserved set to '00h'          | 00000000 | 0     | Established Timings III |
| 67         | 00    | = Reserved set to '00h'          | 00000000 | 0     | Display Descriptor      |
| 68         | 00    | = Reserved set to '00h'          | 00000000 | 0     |                         |
| 69         | 00    | = Reserved set to '00h'          | 00000000 | 0     |                         |
| 6A         | 00    | = Reserved set to '00h'          | 00000000 | 0     |                         |
| 6B         | 00    | = Reserved set to '00h'          | 00000000 | 0     |                         |
|            |       | Fourth 18 Byte Data Block:       |          |       | See Section 3.10.3.4    |
| 6C         | 00    |                                  | 00000000 | 0     | Display Product Name    |
| 6D         | 00    |                                  | 00000000 | 0     | (ASCII) String          |
| 6E         | 00    |                                  | 00000000 | 0     | Descriptor              |
| 6F         | FC    | = Display Product Name Block Tag | 11111100 | 252   |                         |
| 70         | 00    |                                  | 00000000 | 0     |                         |
| 71         | 41    | = A                              | 01000001 | 65    |                         |
| 72         | 42    | = B                              | 01000010 | 66    |                         |
| 73         | 43    | = C                              | 01000011 | 67    |                         |
| 74         | 20    | = Space                          | 00100000 | 32    |                         |
| 75         | 4C    | =L                               | 01001100 | 76    |                         |
| 76         | 43    | = C                              | 01000011 | 67    |                         |
| 77         | 44    | = D                              | 01000100 | 68    |                         |
| 78         | 32    | = 2                              | 00110010 | 50    |                         |
| 79         | 31    | = 1                              | 00110001 | 49    |                         |
| <b>7</b> A | 0A    | = Line Feed                      | 00001010 | 10    |                         |
| 7B         | 20    | = Space                          | 00100000 | 32    |                         |
| 7C         | 20    | = Space                          | 00100000 | 32    |                         |
| 7D         | 20    | = Space                          | 00100000 | 32    |                         |
| 7E         | 00    | = Extension Flag                 | 00000000 | 0     | See Section 3.11        |
| <b>7</b> F | 0B    | = Checksum                       | 00001011 | 11    |                         |

End of example 1

# 6.2 EXAMPLE 2: Sample BASE EDID & CEA861 Extension for a DTV Display

Example 2 is a sample base EDID (block 0) data structure and a CEA861 Extension (block 1) for an LCD-TV display that supports only DTV timing modes. PC timing modes are not supported. This is a digital television display, not a PC monitor. The following is a list of the main features:

1. 47-inch LCD TV (16x9 – widescreen) built by the ABC Monitor Company - Model Name is "ABC LCD47w".

2. Native pixel format of the LCD panel is 1920 x 1080.

3. Preferred Timing Mode is 1920 x 1080p @ 60 Hz (DTV timing) using an HDMI-a video input.

- 4. PC video timing modes are not supported.
- 5. sRGB compliant.
- 6. Does not support GTF or CVT.

7. Sample data structure includes a preferred DTV timing mode, a second DTV detailed timing, a third DTV detailed timing and a model name descriptor.

| Address | Value | Function                                                          | Value    | Value |                   |
|---------|-------|-------------------------------------------------------------------|----------|-------|-------------------|
| /Offset | HEX   | Description                                                       | BIN      | DEC   | Notes             |
|         |       | BASE EDID (Block 0)                                               |          |       |                   |
| 00      | 00    | <u> सeader:</u>                                                   | 00000000 | 0     | See Section 3.3   |
| 01      | FF    | _ <b>-</b> ]                                                      | 11111111 | 255   |                   |
| 02      | FF    |                                                                   | 11111111 | 255   |                   |
| 03      | FF    | <b> </b> <del> </del>                                             | 11111111 | 255   |                   |
| 04      | FF    | 4                                                                 | 11111111 | 255   |                   |
| 05      | FF    | <del> </del>                                                      | 11111111 | 255   |                   |
| 06      | FF    |                                                                   | 11111111 | 255   |                   |
| 07      | 00    | <u>ا</u>                                                          | 00000000 | 0     |                   |
| 08      | 04    | $\pi$ "ABC" – <u>EISA ID</u>                                      | 00000100 | 4     | See Section 3.4.1 |
| 09      | 43    | <sup>⊥</sup> <u>Manufacturer's Code Name</u>                      | 01000011 | 67    |                   |
| 0A      | 07    | π "F207" – <u>ID Product Code</u>                                 | 00000111 | 7     | See Section 3.4.2 |
| 0B      | F2    | <u>ا</u>                                                          | 11110010 | 242   |                   |
| 0C      | 01    | <b>π</b> "00000001" – <u>ID Serial Number</u>                     | 00000001 | 1     | See Section 3.4.3 |
| 0D      | 00    |                                                                   | 00000000 | 0     |                   |
| 0E      | 00    |                                                                   | 00000000 | 0     |                   |
| 0F      | 00    | L ال                                                              | 00000000 | 0     |                   |
| 10      | FF    | = Model Year Flag                                                 | 11111111 | 255   | See Section 3.4.4 |
| 11      | 11    | = "2007" is the Model Year                                        | 00010001 | 17    |                   |
| 12      | 01    | = "1" EDID Version Number                                         | 0000001  | 1     | See Section 3.5   |
| 13      | 04    | = "4" EDID Revision Number                                        | 00000100 | 4     |                   |
| 14      | A2    | ☐ Digital Video Input using HDMI-a,<br>▲ 8 Bits per Primary Color | 10100010 | 162   | See Section 3.6.1 |
| 15      | 4F    | = <u>Aspect Ratio</u> is 16 : 9 AR in Landscape                   | 01001111 | 79    | See Section 3.6.2 |
| 16      | 00    | = Aspect Ratio (Landscape) Flag                                   | 00000000 | 0     |                   |
| 17      | 78    | = <u>Display Gamma</u> is 2.20                                    | 01111000 | 120   | See Section 3.6.3 |

| Address | Value | Function                                                                                                                                                                                                                                                                                                                                          | Value    | Value |                   |
|---------|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-------|-------------------|
| /Offset | HEX   | Description                                                                                                                                                                                                                                                                                                                                       | BIN      | DEC   | Notes             |
|         |       | Feature Support Byte:                                                                                                                                                                                                                                                                                                                             | -        | _     | See Section 3.6.4 |
| 18      | 1E    | <ul> <li>7. Standby is not supported</li> <li>6. Suspend is not supported</li> <li>5. Active Off is not supported</li> <li>4-3. RGB 4:4:4, YCrCb 4:4:4 &amp; YCrCb 4:2:2 are supported.</li> <li>2. sRGB is supported</li> <li>1. Preferred Timing Mode includes Native Pixel Format,</li> <li>0. Display is Non-Continuous Frequency.</li> </ul> | 00011110 | 30    | See Beenon 5.0.+  |
| 19      | EE    | T Display x, y Chromaticity                                                                                                                                                                                                                                                                                                                       | 11101110 | 238   | See Section 3.7   |
| 1A      | 91    | + <u>Coordinates:</u>                                                                                                                                                                                                                                                                                                                             | 10010001 | 145   |                   |
| 1B      | A3    | # Red x is 0.640                                                                                                                                                                                                                                                                                                                                  | 10100011 | 163   |                   |
| 1C      | 54    | # Red y is 0.330                                                                                                                                                                                                                                                                                                                                  | 01010100 | 84    |                   |
| 1D      | 4C    | ⋕ Green x is 0.300                                                                                                                                                                                                                                                                                                                                | 01001100 | 76    |                   |
| 1E      | 99    | ⋕ Green y is 0.600                                                                                                                                                                                                                                                                                                                                | 10011001 | 153   |                   |
| 1F      | 26    | 뷰 Blue x is 0.150                                                                                                                                                                                                                                                                                                                                 | 00100110 | 38    |                   |
| 20      | 0F    | 뷰 Blue y is 0.060                                                                                                                                                                                                                                                                                                                                 | 00001111 | 15    |                   |
| 21      | 50    | # White x is 0.313 (D65)                                                                                                                                                                                                                                                                                                                          | 01010000 | 80    |                   |
| 22      | 54    | <u>■</u> White y is 0.329 (D65)                                                                                                                                                                                                                                                                                                                   | 01010100 | 84    |                   |
| 23      | 20    | $\overline{\underline{I}} \begin{array}{l} \text{Supported } \underline{\text{Established Timings I}} \\ 640x480@60\text{Hz}, \end{array}$                                                                                                                                                                                                        | 00100000 | 32    | See Section 3.8   |
| 24      | 00    | Established Timings II include:<br>None Specified                                                                                                                                                                                                                                                                                                 | 00000000 | 0     |                   |
| 25      | 00    | <u>I</u> <u>Manufacturer's Timings:</u> –<br>None Specified                                                                                                                                                                                                                                                                                       | 00000000 | 0     |                   |
|         |       | Standard Timings include:                                                                                                                                                                                                                                                                                                                         |          |       | See Section 3.9   |
| 26      | 01    |                                                                                                                                                                                                                                                                                                                                                   | 00000001 | 1     |                   |
| 27      | 01    | <u></u> П                                                                                                                                                                                                                                                                                                                                         | 00000001 | 1     |                   |
| 28      | 01    | ਜ਼ Not Specified                                                                                                                                                                                                                                                                                                                                  | 00000001 | 1     |                   |
| 29      | 01    | <u>ц</u>                                                                                                                                                                                                                                                                                                                                          | 0000001  | 1     |                   |
| 2A      | 01    | ਜੂ Not Specified                                                                                                                                                                                                                                                                                                                                  | 0000001  | 1     |                   |
| 2B      | 01    | П                                                                                                                                                                                                                                                                                                                                                 | 00000001 | 1     |                   |
| 2C      | 01    | <b>π</b> Not Specified                                                                                                                                                                                                                                                                                                                            | 00000001 | 1     |                   |
| 2D      | 01    | <u> </u>                                                                                                                                                                                                                                                                                                                                          | 00000001 | 1     |                   |
| 2E      | 01    | T Not Specified                                                                                                                                                                                                                                                                                                                                   | 00000001 | 1     |                   |
| 2F      | 01    |                                                                                                                                                                                                                                                                                                                                                   | 00000001 | 1     |                   |
| 30      | 01    | π Not Specified                                                                                                                                                                                                                                                                                                                                   | 00000001 | 1     |                   |
| 31      | 01    |                                                                                                                                                                                                                                                                                                                                                   | 00000001 | 1     |                   |
| 32      | 01    | ग Not Specified                                                                                                                                                                                                                                                                                                                                   | 00000001 | 1     |                   |
| 33      | 01    |                                                                                                                                                                                                                                                                                                                                                   | 00000001 | 1     |                   |
| 34      | 01    | <u></u> ₩ Not Specified                                                                                                                                                                                                                                                                                                                           | 00000001 | 1     |                   |
| 35      | 01    | ╝                                                                                                                                                                                                                                                                                                                                                 | 0000001  | 1     |                   |

| Address    | Value | Function                                                        | Value    | Value |                        |
|------------|-------|-----------------------------------------------------------------|----------|-------|------------------------|
| /Offset    | HEX   | Description                                                     | BIN      | DEC   | Notes                  |
|            |       | First 18 Byte Data Block:                                       |          |       | See Section 3.10.2     |
| 36         | 02    | Tr Pixel Clock                                                  | 00000010 | 2     | Preferred Timing Mode  |
| 37         | 3A    | <u> і</u> is 148.500 MHz.                                       | 00111010 | 58    | 1920x1080@60Hz         |
| 38         | 80    |                                                                 | 1000000  | 128   | (1080p DTV Timing)     |
| 39         | 18    | is 1920 Pixels. Horizontal                                      | 00011000 | 24    | (CEA Format #16)       |
| 3A         | 71    | Heanking is 280 Pixels.                                         | 01111000 | 113   | (per CEA861 Standard)  |
| 3B         | 38    |                                                                 | 00111000 | 56    |                        |
| <b>3</b> C | 2D    | ┨ 1080 lines. Vertical Blanking                                 | 00101101 | 45    |                        |
| 3D         | 40    | ⊥ is 45 lines.                                                  | 01000000 | 64    |                        |
| <b>3</b> E | 58    | T Horizontal Front Porch is 88 Pixels.                          | 01011000 | 88    |                        |
| <b>3</b> F | 2C    | Horizontal Sync Pulse Width is 44.                              | 00101100 | 44    |                        |
| 40         | 04    | Uertical Front Porch is 4 lines.                                | 00000100 | 4     |                        |
| 41         | 05    | Urtical Sync Pulse Width is 5 lines.                            | 00000101 | 5     |                        |
| 42         | 0F    |                                                                 | 00001111 | 15    |                        |
| 43         | 48    | ╡ is 1039 mm. Vertical Addressable                              | 01001000 | 72    |                        |
| 44         | 42    | ⊥ Image Size is 584 mm.                                         | 01000010 | 66    |                        |
| 45         | 00    | = Horizontal Border Size is 0 pixels.                           | 00000000 | 0     |                        |
| 46         | 00    | = Vertical Border Size is 0 lines.                              | 00000000 | 0     |                        |
| 47         | 1E    | Timing is Non-Interlaced Video,<br>Stereo Video is not Support, | 00011110 | 30    |                        |
|            |       | Digital Separate + Syncs are required.                          |          |       |                        |
|            |       | Second 18 Byte Data Block:                                      |          |       | See Section 3.10.2     |
| 48         | 01    | T Pixel Clock                                                   | 00000001 | 1     | Detailed Timing        |
| 49         | 1D    | ≝ is 74.250 MHz.                                                | 00011101 | 29    | Descriptor - 1920x1080 |
| <b>4A</b>  | 80    |                                                                 | 1000000  | 128   | @60Hz Interlaced       |
| <b>4B</b>  | 18    | is 1920 Pixels. Horizontal                                      | 00011000 | 24    | (1080i DTV Timing)     |
| 4C         | 71    | Hanking is 280 Pixels.                                          | 01111000 | 113   | (CEA Format #5)        |
| 4D         | 1C    | ਜ਼ Vertical Addressable Video is                                | 00011100 | 28    | (per CEA861 Standard)  |
| <b>4</b> E | 16    | ┨ 540 lines. Vertical Blanking                                  | 00010110 | 22    |                        |
| <b>4</b> F | 20    | ⊥ is 22 lines.                                                  | 00100000 | 32    |                        |
| 50         | 58    | $\overline{\Pi}$ Horizontal Front Porch is 88 Pixels.           | 01011000 | 88    |                        |
| 51         | 2C    | Horizontal Sync Pulse Width is 44.                              | 00101100 | 44    |                        |
| 52         | 25    | Vertical Front Porch is 2 lines.                                | 00100101 | 37    |                        |
| 53         | 00    | <sup>⊥</sup> Vertical Sync Pulse Width is 5 lines.              | 00000000 | 0     |                        |
| 54         | 0F    | ਜ਼ Horizontal Addressable Image Size                            | 00001111 | 15    |                        |
| 55         | 48    | is 1039 mm. Vertical Addressable                                | 01001000 | 72    |                        |
| 56         | 42    | ⊥ Image Size is 584 mm.                                         | 01000010 | 66    |                        |
| 57         | 00    | = Horizontal Border Size is 0 pixels.                           | 00000000 | 0     |                        |
| 58         | 00    | = Vertical Border Size is 0 lines.                              | 00000000 | 0     |                        |
| 59         | 9E    | Timing is Interlaced Video,<br>Stereo Video is not Support,     | 10011110 | 158   |                        |
|            |       | L Digital Separate + Syncs are required.                        |          |       |                        |

| Address    | Value    | Function                                                                                                  | Value    | Value |                       |
|------------|----------|-----------------------------------------------------------------------------------------------------------|----------|-------|-----------------------|
| /Offset    | HEX      | Description                                                                                               | BIN      | DEC   | Notes                 |
|            |          | Third 18 Byte Data Block:                                                                                 |          |       | See Section 3.10.2    |
| 5A         | 01       | T Pixel Clock                                                                                             | 00000001 | 1     | Detailed Timing       |
| 5B         | 1D       | <u>іі</u> is 74.250 MHz.                                                                                  | 00011101 | 29    | Descriptor - 1280x720 |
| 5C         | 00       | T Horizontal Addressable Video                                                                            | 00000000 | 0     | @60Hz Non-Interlaced  |
| 5D         | 72       | is 1280 pixels. Horizontal                                                                                | 01110010 | 114   | (720p DTV Timing)     |
| 5E         | 51       | Blanking is 370 pixels.                                                                                   | 01010001 | 81    | (CEA Format #4)       |
| 5F         | D0       | $\overline{\mathbf{T}}$ Vertical Addressable Video is                                                     | 11010000 | 208   | (per CEA861 Standard) |
| 60         | 1E       | - 720 lines. Vertical Blanking                                                                            | 00011110 | 30    |                       |
| 61         | 20       | is 30 lines.                                                                                              | 00100000 | 32    |                       |
| 62         | 6E       | THORIZONTAL Front Porch is 110 pixels.                                                                    | 01101110 | 110   |                       |
| 63         | 28       | Horizontal Sync Pulse Width is 40 pixels                                                                  | 00101000 | 40    |                       |
| 64         | 55       | Vertical Front Porch is 5 lines.                                                                          | 01010101 | 85    |                       |
| 65         | 00       | Letter Vertical Sync Pulse Width is 5 lines.                                                              | 00000000 | 0     |                       |
| 66         | 0F       |                                                                                                           | 11001101 | 205   |                       |
| 67         | 48       | ╡ is 1039 mm. Vertical Addressable                                                                        | 10110011 | 179   |                       |
| 68         | 42       | ⊥ Image Size is 584 mm.                                                                                   | 01000010 | 66    |                       |
| 69         | 00       | = Horizontal Border Size is 0 pixels.                                                                     | 00000000 | 0     |                       |
| 6A         | 00       | = Vertical Border Size is 0 lines.                                                                        | 00000000 | 0     |                       |
| 6B         | 1E       | Timing is Non-Interlaced Video,<br>Stereo Video is not Support,<br>Digital Separate + Syncs are required. | 00011110 | 30    |                       |
|            |          | Fourth 18 Byte Data Block:                                                                                |          |       | See Section 3.10.3.4  |
| 6C         | 00       | Monitor Name ASCII Descriptor                                                                             | 00000000 | 0     |                       |
| 6D         | 00       |                                                                                                           | 00000000 | 0     |                       |
| 6E         | 00       |                                                                                                           | 00000000 | 0     |                       |
| 6F         | FC       | = Monitor Name Tag                                                                                        | 11111100 | 252   |                       |
| 70         | 00       |                                                                                                           | 00000000 | 0     |                       |
| 71         | 41       | = A                                                                                                       | 01000001 | 65    |                       |
| 72         | 42       | = B                                                                                                       | 01000010 | 66    |                       |
| 73         | 43       | = C                                                                                                       | 01000011 | 67    |                       |
| 74         | 20       | = Space                                                                                                   | 00100000 | 32    |                       |
| 75         | 4C       | = L                                                                                                       | 01001100 | 76    |                       |
| 76         | 43       | = C                                                                                                       | 01000011 | 67    |                       |
| 77         | 44       | = D                                                                                                       | 01000100 | 68    |                       |
| 78         | 34       | =4                                                                                                        | 00110111 | 52    |                       |
| 79         | 37       | =7                                                                                                        | 00110111 | 55    |                       |
| 7A         | 77       | = w                                                                                                       | 01110111 | 119   |                       |
| 7B         | 0A       | = Line Feed                                                                                               | 00001010 | 10    |                       |
| 7C         | 20       | = Space                                                                                                   | 00100000 | 32    |                       |
| 7D         | 20       | = Space                                                                                                   | 00100000 | 32    |                       |
| 7E         | 01<br>CD | = Extension Flag                                                                                          | 00000001 | 1     | See Section 3.11      |
| <b>7</b> F | CB       | = Checksum                                                                                                | 11001011 | 203   |                       |

| Address<br>/Offset | Value<br>HEX | Function<br>Description                                                                                                                                                                                                                            | Value<br>BIN | Value<br>DEC | Notes                    |
|--------------------|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|--------------|--------------------------|
| /Oliset            | пел          | CEA 861 EXTENSION Block – Version 3                                                                                                                                                                                                                | DIN          | DEC          | Refer to CEA 861         |
|                    |              | (Block 1)                                                                                                                                                                                                                                          |              |              | Standard for definitions |
| 80                 | 02           | $\underline{\overline{II}}_{02h}^{CEA 861 EXTENSION Block Tag Code}$                                                                                                                                                                               | 00000010     | 2            |                          |
| 81                 | 03           | = CEA 861 EXTENSION Block Version #3                                                                                                                                                                                                               | 00000011     | 3            |                          |
| 82                 | 18           | $\overline{\underline{\mathbb{I}}} \begin{array}{c} \text{Detail Timing Descriptors start at} \\ address 9Ah \end{array}$                                                                                                                          | 00011000     | 24           |                          |
| 83                 | 72           | Underscan is not supported.<br>Basic Audio is supported.<br>YCbCr 4:4:4 & YCbCr 4:2:2 are<br>supported.<br>Number of native formats is 2                                                                                                           | 01110010     | 114          |                          |
| 84                 | 47           | Video Data Block Tag Code is 2.<br>Number of Short Video Descriptor Bytes<br>is 7.                                                                                                                                                                 | 01000111     | 71           |                          |
| 85                 | 90           | $\overline{\underline{I}} \begin{array}{c} 1920 \times 1080 \text{ p } 59.94/60 \text{ Hz } 16 : 9 \text{ AR} \\ \hline \underline{I} \begin{array}{c} (\text{CEA Format #16}) \text{ is a supported Native} \\ \hline \text{Format.} \end{array}$ | 10010000     | 144          |                          |
| 86                 | 85           | 〒 1920x1080i 59.94/60 Hz 16 : 9 AR<br>(CEA Format #5) is a supported Native<br>⊥ Format.                                                                                                                                                           | 10000110     | 133          |                          |
| 87                 | 04           | $\underline{\overline{I}} \stackrel{1280x720p}{=} 59.94/60 \text{ Hz } 16 : 9 \text{ AR (CEA}$<br>Format #4) is a supported format.                                                                                                                | 00000100     | 4            |                          |
| 88                 | 03           | $\overline{\underline{I}}$ 720x480p 59.94/60 Hz 16 : 9 AR (CEA<br>$\overline{\underline{I}}$ Format #3) is a supported format.                                                                                                                     | 00000011     | 3            |                          |
| 89                 | 02           | $\overline{\underline{II}}$ 720x480p 59.94/60 Hz 4 : 3 AR (CEA<br>$\overline{\underline{II}}$ Format #2) is a supported format.                                                                                                                    | 00000010     | 2            |                          |
| 8A                 | 07           | $\overline{\underline{I}} \begin{array}{c} 720x480i \ 59.94/60 \ \text{Hz} \ 16 : 9 \ \text{AR} \ (\text{CEA} \\ \overline{\underline{I}} \begin{array}{c} Format \ \#7) \ \text{is a supported format.} \end{array}$                              | 00000111     | 7            |                          |
| 8B                 | 06           | $\overline{\underline{II}} \begin{array}{c} 720x480i \ 59.94/60 \ \text{Hz} \ 4:3 \ \text{AR} \ (\text{CEA} \\ \overline{\underline{II}} \ \text{Format $\#6$}) \ \text{is a supported format.} \end{array}$                                       | 00000110     | 6            |                          |
| 8C                 | 23           | Audio Data Block Tag Code is 1.<br>Number of Short Audio Descriptor Bytes<br>is 3.                                                                                                                                                                 | 00100011     | 35           |                          |
| 8D                 | 09           | Audio Format Tag Code is 1 LPCM is<br>supported. Maximum number of audio<br>channels is 2.                                                                                                                                                         | 00001001     | 9            |                          |
| 8E                 | 07           | ☐ Supported Sampling Frequencies include:<br>☐ 48kHz; 44.1kHz & 32kHz.                                                                                                                                                                             | 00000111     | 7            |                          |
| 8F                 | 07           | $\overline{\underline{\mathbb{I}}}$ Supported Sampling Bit Rates include:<br>$\underline{\overline{\mathbb{I}}}$ 24 bit; 20 bit & 16 bit.                                                                                                          | 0000111      | 7            |                          |
| 90                 | 83           | Speaker Allocation Block Tag Code is 4.<br>Number of Speaker Allocation<br>Descriptor Bytes is 3.                                                                                                                                                  | 10000011     | 131          |                          |
| 91                 | 01           | ☐ Speaker Allocation is Front-Left &<br>☐ Front-Right.                                                                                                                                                                                             | 00000001     | 1            |                          |
| 92                 | 00           | = Reserved (Shall be 00h).                                                                                                                                                                                                                         | 00000000     | 0            |                          |
| 93                 | 00           | = Reserved (Shall be 00h).                                                                                                                                                                                                                         | 00000000     | 0            |                          |

| Address   | Value | Function                                                                                            | Value    | Value |                       |
|-----------|-------|-----------------------------------------------------------------------------------------------------|----------|-------|-----------------------|
| /Offset   | HEX   | Description                                                                                         | BIN      | DEC   | Notes                 |
| 94        | 65    | Vendor Specific Data Block Tag Code<br>is 3. Number of Vendor Specific Data<br>Bytes is 5.          | 01100101 | 101   |                       |
| 95        | 03    | $\pi$ The 24 bit IEEE Registration Identifier                                                       | 00000011 | 3     |                       |
| 96        | 0C    | # is '000C03h'.                                                                                     | 00001100 | 12    |                       |
| 97        | 00    | _ <u>1</u>                                                                                          | 00000000 | 0     |                       |
| 98        | 10    | ਜ਼ Vendor Specific Data is '1000h'.                                                                 | 1000000  | 16    |                       |
| 99        | 00    | <u>ا</u>                                                                                            | 00000000 | 0     |                       |
|           |       | Fifth 18 Byte Data Block:                                                                           |          |       | Detailed Timing       |
| 9A        | 8E    | T Pixel Clock                                                                                       | 10001110 | 142   | Descriptor – 720x480  |
| 9B        | 0A    | <u> </u>                                                                                            | 00001010 | 10    | @60Hz Non-Interlaced  |
| 9C        | D0    |                                                                                                     | 11010000 | 208   | (480p, 16 : 9 AR      |
| 9D        | 8A    | is 720 pixels. Horizontal                                                                           | 10001010 | 138   | DTV Timing)           |
| 9E        | 20    | Heanking is 138 pixels.                                                                             | 00100000 | 32    | (CEA Format #3)       |
| 9F        | EO    | $\overline{\mathbf{T}}$ Vertical Addressable Video is                                               | 11100000 | 224   | (per CEA861 Standard) |
| A0        | 2D    | 480 lines. Vertical Blanking                                                                        | 00101101 | 45    | -                     |
| A1        | 10    | ⊥ is 45 lines.                                                                                      | 00010000 | 16    |                       |
| A2        | 10    | $\overline{\mathbf{T}}$ Horizontal Front Porch is 16 pixels.                                        | 00010000 | 16    | -                     |
| A3        | 3E    | Horizontal Sync Pulse Width is 62 pixels                                                            | 00111110 | 62    | -                     |
| A4        | 96    | - Vertical Front Porch is 9 lines.                                                                  | 10010110 | 150   |                       |
| A5        | 00    | <sup>⊥</sup> Vertical Sync Pulse Width is 6 lines.                                                  | 00000000 | 0     | -                     |
| A6        | 1F    | π Displayed Image                                                                                   | 00011111 | 16    | -                     |
| A7        | 09    | Aspect Ratio                                                                                        | 00001001 | 9     |                       |
| A8        | 00    | ⊥ is 16 by 9.                                                                                       | 0000000  | 00    |                       |
| A9        | 00    | = Horizontal Border Size is 0 pixels.                                                               | 00000000 | 0     |                       |
| AA        | 00    | = Vertical Border Size is 0 lines.                                                                  | 00000000 | 0     |                       |
| AB        | 18    | Timing is Interlaced Video,<br>Stereo Video is not Support,<br>Digital Separate Syncs are required. | 00011000 | 24    |                       |
|           |       | Sixth 18 Byte Data Block:                                                                           |          |       | Detailed Timing       |
| AC        | 8E    | $\pi$ Pixel Clock                                                                                   | 10001110 | 142   | Descriptor – 720x480  |
| AD        | 0A    | <u>і</u> is 27.027 MHz.                                                                             | 00001010 | 10    | @60Hz Non-Interlaced  |
| AE        | D0    |                                                                                                     | 11010000 | 208   | (480p, 4 : 3 AR       |
| AF        | 8A    | is 720 pixels. Horizontal                                                                           | 10001010 | 138   | DTV Timing)           |
| BO        | 20    | Blanking is 138 pixels.                                                                             | 00100000 | 32    | (CEA Format #2)       |
| B1        | E0    | Tr Vertical Addressable Video is                                                                    | 11100000 | 224   | (per CEA861 Standard) |
| B2        | 2D    | 480 lines. Vertical Blanking                                                                        | 00101101 | 45    |                       |
| B3        | 10    | is 45 lines.                                                                                        | 00010000 | 16    |                       |
| <b>B4</b> | 10    | THORIZONTAL FRONT PORCH is 16 pixels.                                                               | 00010000 | 16    |                       |
| B5        | 3E    | Horizontal Sync Pulse Width is 62 pixels                                                            | 00111110 | 62    |                       |
| <b>B6</b> | 96    | Vertical Front Porch is 9 lines.                                                                    | 10010110 | 150   |                       |
| <b>B7</b> | 00    | ■ Vertical Sync Pulse Width is 6 lines.                                                             | 00000000 | 0     |                       |
| <b>B8</b> | 04    | ਜ਼ Displayed Image                                                                                  | 00000100 | 4     |                       |
| <b>B9</b> | 03    | Aspect Ratio                                                                                        | 00000011 | 3     |                       |
| BA        | 00    | <u>⊥</u> is 4 by 3.                                                                                 | 00000000 | 00    |                       |
| BB        | 00    | = Horizontal Border Size is 0 pixels.                                                               | 00000000 | 0     |                       |
| BC        | 00    | = Vertical Border Size is 0 lines.                                                                  | 00000000 | 0     |                       |

| Address | Value | Function                                                     | Value    | Value |                       |
|---------|-------|--------------------------------------------------------------|----------|-------|-----------------------|
| /Offset | HEX   | Description                                                  | BIN      | DEC   | Notes                 |
|         |       | Timing is Interlaced Video,                                  |          |       |                       |
| BD      | 18    | Stereo Video is not Support,                                 | 00011000 | 24    |                       |
|         |       | L Digital Separate Syncs are required.                       |          |       |                       |
|         |       | Seventh 18 Byte Data Block:                                  |          |       | Detailed Timing       |
| BE      | 8E    | ਜ Pixel Clock                                                | 10001110 | 142   | Descriptor – 720x480  |
| BF      | 0A    | ≝ is 27.027 MHz.                                             | 00001010 | 10    | @60Hz Interlaced      |
| CO      | A0    | T Horizontal Addressable Video                               | 10100000 | 160   | (480i, 16 : 9 AR      |
| C1      | 14    | is 1440 pixels. Horizontal                                   | 00010100 | 20    | DTV Timing)           |
| C2      | 51    | <sup>⊥</sup> Blanking is 276 pixels.                         | 01010001 | 81    | (CEA Format #7)       |
| C3      | F0    | Tr Vertical Addressable Video is                             | 11110000 | 240   | (per CEA861 Standard) |
| C4      | 16    | 240 lines. Vertical Blanking                                 | 00010110 | 22    |                       |
| C5      | 00    | <u> I</u> is 23 lines.                                       | 00000000 | 0     |                       |
| C6      | 26    | ਜ਼ Horizontal Front Porch is 38 pixels.                      | 00100110 | 38    |                       |
| C7      | 7C    | Horizontal Sync Pulse Width is 124 pix.                      | 01111100 | 124   |                       |
| C8      | 43    | Vertical Front Porch is 4 lines.                             | 01000011 | 67    |                       |
| С9      | 00    | Letter Pulse Width is 3 lines.                               | 00000000 | 0     |                       |
| CA      | 1F    | ਜ਼ Displayed Image                                           | 00011111 | 16    |                       |
| СВ      | 09    | Aspect Ratio                                                 | 00001001 | 9     |                       |
| CC      | 00    | <u> I</u> is 16 by 9.                                        | 00000000 | 00    |                       |
| CD      | 00    | = Horizontal Border Size is 0 pixels.                        | 00000000 | 0     |                       |
| CE      | 00    | = Vertical Border Size is 0 lines.                           | 00000000 | 0     |                       |
|         |       | Timing is Interlaced Video,                                  |          |       |                       |
| CF      | 98    | H Stereo Video is not Support,                               | 10011000 | 152   |                       |
|         |       | Digital Separate Syncs are required.                         |          |       |                       |
| DA      | 017   | Eighth 18 Byte Data Block:                                   | 10001110 | 1.40  | Detailed Timing       |
| D0      | 8E    | T Pixel Clock                                                | 10001110 | 142   | Descriptor – 720x480  |
| D1      | 0A    | ⊥ is 27.027 MHz.                                             | 00001010 | 10    | @60Hz Interlaced      |
| D2      | A0    | THORIZONTAL Addressable Video                                | 10100000 | 160   | (480i, 4 : 3 AR       |
| D3      | 14    | is 1440 pixels. Horizontal                                   | 00010100 | 20    | DTV Timing)           |
| D4      | 51    | Head Blanking is 276 pixels.                                 | 01010001 | 81    | (CEA Format #6)       |
| D5      | F0    | $\overline{\mathbf{T}}$ Vertical Addressable Video is        | 11110000 | 240   | (per CEA861 Standard) |
| D6      | 16    | - 240 lines. Vertical Blanking                               | 00010110 | 22    |                       |
| D7      | 00    | <u>⊥</u> is 23 lines.                                        | 00000000 | 0     |                       |
| D8      | 26    | $\overline{\mathbf{T}}$ Horizontal Front Porch is 38 pixels. | 00100110 | 38    |                       |
| D9      | 7C    | Horizontal Sync Pulse Width is 124 pix.                      | 01111100 | 124   |                       |
| DA      | 43    | Vertical Front Porch is 4 lines.                             | 01000011 | 67    |                       |
| DB      | 00    | <sup>⊥</sup> Vertical Sync Pulse Width is 3 lines.           | 00000000 | 0     |                       |
| DC      | 04    | T Displayed Image                                            | 00000100 | 4     |                       |
| DD      | 03    | Aspect Ratio                                                 | 00000011 | 3     |                       |
| DE      | 00    | ⊥ is 4 by 3.                                                 | 00000000 | 00    |                       |
| DF      | 00    | = Horizontal Border Size is 0 pixels.                        | 00000000 | 0     |                       |
| EO      | 00    | = Vertical Border Size is 0 lines.                           | 00000000 | 0     |                       |
| E1      | 98    | Timing is Interlaced Video,<br>Stereo Video is not Support,  | 10011000 | 152   |                       |
| EI      | 98    | Digital Separate Syncs are required.                         | 10011000 | 152   |                       |
|         |       | - Digital Separate Syncs are required.                       |          |       |                       |

| Address | Value | Function         | Value    | Value |       |
|---------|-------|------------------|----------|-------|-------|
| /Offset | HEX   | Description      | BIN      | DEC   | Notes |
|         |       | Unused Addresses |          |       |       |
| E2      | 00    | = No Data        | 00000000 | 0     |       |
| E3      | 00    | = No Data        | 00000000 | 0     |       |
| E4      | 00    | = No Data        | 00000000 | 0     |       |
| E5      | 00    | = No Data        | 00000000 | 0     |       |
| E6      | 00    | = No Data        | 00000000 | 0     |       |
| E7      | 00    | = No Data        | 00000000 | 0     |       |
| E8      | 00    | = No Data        | 00000000 | 0     |       |
| E9      | 00    | = No Data        | 00000000 | 0     |       |
| EA      | 00    | = No Data        | 00000000 | 0     |       |
| EB      | 00    | = No Data        | 00000000 | 0     |       |
| EC      | 00    | = No Data        | 00000000 | 0     |       |
| ED      | 00    | = No Data        | 00000000 | 0     |       |
| EE      | 00    | = No Data        | 00000000 | 0     |       |
| EF      | 00    | = No Data        | 00000000 | 0     |       |
| FO      | 00    | = No Data        | 00000000 | 0     |       |
| F1      | 00    | = No Data        | 00000000 | 0     |       |
| F2      | 00    | = No Data        | 00000000 | 0     |       |
| F3      | 00    | = No Data        | 00000000 | 0     |       |
| F4      | 00    | = No Data        | 00000000 | 0     |       |
| F5      | 00    | = No Data        | 00000000 | 0     |       |
| F6      | 00    | = No Data        | 00000000 | 0     |       |
| F7      | 00    | = No Data        | 00000000 | 0     |       |
| F8      | 00    | = No Data        | 00000000 | 0     |       |
| F9      | 00    | = No Data        | 00000000 | 0     |       |
| FA      | 00    | = No Data        | 00000000 | 0     |       |
| FB      | 00    | = No Data        | 00000000 | 0     |       |
| FC      | 00    | = No Data        | 00000000 | 0     |       |
| FD      | 00    | = No Data        | 00000000 | 0     |       |
| FE      | 00    | = No Data        | 00000000 | 0     |       |
| FF      | C9    | = Checksum       | 10011000 | 152   |       |

End of example 2

# 6.3 EXAMPLE 3: Sample BASE EDID & CEA861 Extension for a IT/DTV Display

Example 3 is a sample base EDID (block 0) data structure and a CEA861 Extension (block 1) for a 50inch plasma display that supports both IT (PC) timing modes and DTV timing modes. This is a dual purpose display. The following is a list of the main features:

1. 55-inch Plasma Display (16 : 9 AR – widescreen) built by the ABC Monitor Company - Model Name is "ABC PLA55".

2. Native format of the plasma panel is 1366 by 768.

3. Preferred Mode is 1360x768@60Hz (IT timing) using an HDMI-a video input.

- 4. s-RGB compliant.
- 5. Does not support GTF or CVT.

6. Sample data structure includes: the preferred IT timing mode; a DTV detailed timing; established timings III; and a model name descriptor.

| Address | Value | Function                                                               | Value    | Value |                   |
|---------|-------|------------------------------------------------------------------------|----------|-------|-------------------|
| /Offset | HEX   | Description                                                            | BIN      | DEC   | Notes             |
|         |       |                                                                        |          |       |                   |
| 00      | 00    | T Header:                                                              | 00000000 | 0     | See Section 3.3   |
| 01      | FF    | 4                                                                      | 11111111 | 255   |                   |
| 02      | FF    | 4                                                                      | 11111111 | 255   |                   |
| 03      | FF    | 4                                                                      | 11111111 | 255   |                   |
| 04      | FF    | 4                                                                      | 11111111 | 255   |                   |
| 05      | FF    | 4                                                                      | 11111111 | 255   |                   |
| 06      | FF    | 4                                                                      | 11111111 | 255   |                   |
| 07      | 00    | L ا                                                                    | 00000000 | 0     |                   |
| 08      | 04    | π "ABC" – <u>EISA ID</u>                                               | 00000100 | 4     | See Section 3.4.1 |
| 09      | 43    | □ <u>Manufacturer's Code Name</u>                                      | 01000011 | 67    |                   |
| 0A      | 08    | π "F208" – ID Product Code                                             | 00001000 | 8     | See Section 3.4.2 |
| 0B      | F2    | <u> </u>                                                               | 11110010 | 242   |                   |
| 0C      | 01    | π "0000001" – <u>ID Serial Number</u>                                  | 00000001 | 1     | See Section 3.4.3 |
| 0D      | 00    | 4                                                                      | 00000000 | 0     |                   |
| 0E      | 00    | 4                                                                      | 00000000 | 0     |                   |
| 0F      | 00    | L<br>ا                                                                 | 00000000 | 0     |                   |
| 10      | 10    | = <u>Week of Manufacture</u> is 16                                     | 00010000 | 16    | See Section 3.4.4 |
| 11      | 11    | = <u>Year of Manufacture</u> is 2007                                   | 00010001 | 17    |                   |
| 12      | 01    | = "1" EDID Version Number                                              | 00000001 | 1     | See Section 3.5   |
| 13      | 04    | = "4" EDID Revision Number                                             | 00000100 | 4     |                   |
| 14      | A2    | <u>I</u> Digital Video Input using HDMI-a,<br>8 Bits per Primary Color | 10100010 | 162   | See Section 3.6.1 |
| 15      | 79    | = <u>Aspect Ratio</u> is $16:9$ AR in Landscape                        | 01111001 | 121   | See Section 3.6.2 |
| 16      | 44    | = Aspect Ratio (Landscape) Flag                                        | 01000100 | 68    |                   |
| 17      | 78    | = Display Gamma is 2.20                                                | 01111000 | 120   | See Section 3.6.3 |

| Address                | Value    | Function                                                                                                                                                                                                                                                                                                                                                                         | Value                | Value    |                   |
|------------------------|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|----------|-------------------|
| /Offset                | HEX      | Description                                                                                                                                                                                                                                                                                                                                                                      | BIN                  | DEC      | Notes             |
| 18                     | 1E       | <ul> <li>Feature Support Byte:</li> <li>7. Standby is not supported</li> <li>6. Suspend is not supported</li> <li>5. Active Off is not supported</li> <li>4-3. RGB 4:4:4, YCrCb 4:4:4 &amp; YCrCb 4:2:2 are supported.</li> <li>2. sRGB is supported</li> <li>1. Preferred Timing Mode includes Native Pixel Format,</li> <li>0. Display is Non-Continuous Frequency.</li> </ul> | 00011110             | 30       | See Section 3.6.4 |
| 19                     | EE       | $\pi$ Display x,y Chromaticity                                                                                                                                                                                                                                                                                                                                                   | 11101110             | 238      | See Section 3.7   |
| 1A                     | 91       | + Coordinates:                                                                                                                                                                                                                                                                                                                                                                   | 10010001             | 145      |                   |
| 1B                     | A3       | $\frac{1}{4}$ Red x is 0.640                                                                                                                                                                                                                                                                                                                                                     | 10100011             | 163      |                   |
| 1C                     | 54       | # Red y is 0.330                                                                                                                                                                                                                                                                                                                                                                 | 01010100             | 84       |                   |
| 1D                     | 4C       | 뷰 Green x is 0.300                                                                                                                                                                                                                                                                                                                                                               | 01001100             | 76       |                   |
| 1E                     | 99       | ⋕ Green y is 0.600                                                                                                                                                                                                                                                                                                                                                               | 10011001             | 153      |                   |
| 1F                     | 26       | ⋕ Blue x is 0.150                                                                                                                                                                                                                                                                                                                                                                | 00100110             | 38       |                   |
| 20                     | 0F       | 뷰 Blue y is 0.060                                                                                                                                                                                                                                                                                                                                                                | 00001111             | 15       |                   |
| 21                     | 50       | ₩ White x is 0.313 (D65)                                                                                                                                                                                                                                                                                                                                                         | 01010000             | 80       |                   |
| 22                     | 54       | <u> </u>                                                                                                                                                                                                                                                                                                                                                                         | 01010100             | 84       |                   |
| 23                     | FF       | Established Timings I include:<br>720x400@70Hz/88Hz;<br>640x480@60Hz/67Hz/72Hz/75Hz &<br>800x600@56Hz/60Hz                                                                                                                                                                                                                                                                       | 11111111             | 255      | See Section 3.8   |
| 24                     | EF       | Established Timings II include:<br>800x600@72Hz/75Hz;<br>832x624@75Hz;<br>1024x768@60Hz/70Hz/75Hz &<br>1280x1024@75Hz                                                                                                                                                                                                                                                            | 11101111             | 254      |                   |
| 25                     | 80       | <u>I</u> <u>Manufacturer's Timings</u> include:<br><u>1152x870@75Hz</u>                                                                                                                                                                                                                                                                                                          | 10000000             | 128      |                   |
|                        |          | Standard Timings include:                                                                                                                                                                                                                                                                                                                                                        |                      |          | See Section 3.9   |
| 26                     | 81       | <u> </u>                                                                                                                                                                                                                                                                                                                                                                         | 10000001             | 129      |                   |
| 27                     | 99       |                                                                                                                                                                                                                                                                                                                                                                                  | 10011001             | 153      |                   |
| 28                     | 81       | 〒1280x1024@60Hz                                                                                                                                                                                                                                                                                                                                                                  | 10000001             | 129      |                   |
| 29                     | 80       |                                                                                                                                                                                                                                                                                                                                                                                  | 10000000             | 128      |                   |
| 2A                     | 81       | 〒 <sup>1280x960@85Hz</sup>                                                                                                                                                                                                                                                                                                                                                       | 10000001             | 129      |                   |
| 2B                     | 59<br>81 | -<br>- 1280x060@60Hz                                                                                                                                                                                                                                                                                                                                                             | 01011001             | 89       |                   |
| 2C                     | 81<br>40 | 〒1280x960@60Hz<br>川                                                                                                                                                                                                                                                                                                                                                              | 10000001<br>01000000 | 129      |                   |
| 2D<br>2E               | 40<br>61 | π 1024x768@85Hz                                                                                                                                                                                                                                                                                                                                                                  | 01000000             | 64<br>97 |                   |
| 2E<br>2F               | 59       | T 1024X708@85HZ                                                                                                                                                                                                                                                                                                                                                                  | 010100001            | 89       |                   |
| <u>2F</u><br><u>30</u> | 4B       | π 848x480@60Hz                                                                                                                                                                                                                                                                                                                                                                   | 01001001             | 75       |                   |
| 30                     | 4D<br>C0 |                                                                                                                                                                                                                                                                                                                                                                                  | 11000001             | 192      |                   |
| 31                     | 45       | -<br>π 800x600@85Hz                                                                                                                                                                                                                                                                                                                                                              | 00100101             | 69       |                   |
| 32                     | 59       |                                                                                                                                                                                                                                                                                                                                                                                  | 01011001             | 89       |                   |
| 34                     | 31       | -<br>π 640x480@85Hz                                                                                                                                                                                                                                                                                                                                                              | 00110001             | 49       |                   |
| 35                     | 59       |                                                                                                                                                                                                                                                                                                                                                                                  | 010110001            | 89       |                   |
| 33                     | 39       | -                                                                                                                                                                                                                                                                                                                                                                                | 01011001             | 89       |                   |

| Address    | Value    | Function                                                      | Value             | Value |                                      |
|------------|----------|---------------------------------------------------------------|-------------------|-------|--------------------------------------|
| /Offset    | HEX      | Description                                                   | BIN               | DEC   | Notes                                |
|            |          | First 18 Byte Data Block:                                     |                   |       | See Section 3.10.2                   |
| 36         | 66       | T Pixel Clock                                                 | 01100110          | 102   | Preferred Timing Mode                |
| 37         | 21       | ≝ is 85.500 MHz.                                              | 00100001          | 33    | 1360x768@60Hz                        |
| 38         | 50       | Horizontal Addressable Video                                  | 01010000          | 80    | (PC Timing)                          |
| 39         | B0       | ╡ is 1360 pixels. Horizontal                                  | 10110000          | 176   | (per VESA DMT                        |
| 3A         | 51       | <u> ■</u> Blanking is 432 pixels.                             | 01010001          | 81    | Standard)                            |
| 3B         | 00       | ਜ਼ Vertical Addressable Video is                              | 00000000          | 0     |                                      |
| <b>3</b> C | 1B       | 768 lines. Vertical Blanking                                  | 00011011          | 27    |                                      |
| 3D         | 30       | <u>⊥</u> is 27 lines.                                         | 00110000          | 48    |                                      |
| <b>3</b> E | 40       | $\overline{\Pi}$ Horizontal Front Porch is 64 pixels.         | 01000000          | 64    |                                      |
| <b>3</b> F | 70       | Horizontal Sync Pulse Width is 112 pix.                       | 01110000          | 112   |                                      |
| 40         | 36       | Vertical Front Porch is 3 lines.                              | 00110110          | 54    |                                      |
| 41         | 00       | L Vertical Sync Pulse Width is 6 lines.                       | 00000000          | 0     |                                      |
| 42         | BE       | ਜ਼ੂ Horizontal Addressable Image Size                         | 10111110          | 190   |                                      |
| 43         | AB       | is 1214 mm. Vertical Addressable                              | 10101011          | 171   |                                      |
| 44         | 42       | <u> I</u> Image Size is 683 mm.                               | 01000010          | 66    |                                      |
| 45         | 00       | = Horizontal Border Size is 0 pixels.                         | 00000000          | 0     |                                      |
| 46         | 00       | = Vertical Border Size is 0 lines.                            | 00000000          | 0     |                                      |
|            |          | Timing is Non-Interlaced Video,                               |                   | •     |                                      |
| 47         | 1E       | $\frac{1}{11}$ Stereo Video is not Support,                   | 00011110          | 30    |                                      |
|            |          | □ Digital Separate + Syncs are required.                      |                   |       | Que Quetter 2 10 2                   |
| 48         | 01       | Second 18 Byte Data Block:                                    | 01100110          | 102   | See Section 3.10.2                   |
|            | 01       | T Pixel Clock<br>I is 74.250 MHz.                             | 01100110          | 102   | Descriptor - 1280x720                |
| 49         | 1D       |                                                               |                   | 33    | @60Hz Non-Interlaced                 |
| 4A<br>4B   | 00<br>72 | Tr Horizontal Addressable Video                               | 00000000 01110010 | 0 114 | (720p DTV Timing)<br>(CEA Format #4) |
| 4D<br>4C   | 51       | □ Blanking is 370 pixels.                                     | 010100001         | 81    | (per CEA861 Standard)                |
| 4C<br>4D   | D0       | $\overline{\mathbf{T}}$ Vertical Addressable Video is         | 11010000          | 208   | (per CEAsor Standard)                |
| 4D<br>4E   | 1E       | 720 lines. Vertical Blanking                                  | 00011110          | 30    |                                      |
| 4E<br>4F   | 20       | ⊥ is 30 lines.                                                | 00100000          | 30    |                                      |
| 50         | 6E       | $\overline{\mathbf{T}}$ Horizontal Front Porch is 110 pixels. | 01101110          | 110   |                                      |
| 51         | 28       | Horizontal Sync Pulse Width is 40 pixels                      | 00101000          | 40    |                                      |
| 52         | 55       | Vertical Front Porch is 5 lines.                              | 01010100          | 85    |                                      |
| 53         | 00       | Vertical Sync Pulse Width is 5 lines.                         | 00000000          | 0     |                                      |
| 54         | BE       | $\pi$ Horizontal Addressable Image Size                       | 10111110          | 190   |                                      |
| 55         | AB       | is 1214 mm. Vertical Addressable                              | 10101011          | 171   |                                      |
| 56         | 42       | Image Size is 683 mm.                                         | 01000010          | 66    |                                      |
| 57         | 00       | = Horizontal Border Size is 0 pixels.                         | 00000000          | 0     |                                      |
| 58         | 00       | = Vertical Border Size is 0 lines.                            | 00000000          | 0     |                                      |
|            |          | Timing is Non-Interlaced Video,                               |                   |       |                                      |
| 59         | 1E       | H Stereo Video is not Support,                                | 00011110          | 30    |                                      |
|            |          | Digital Separate + Syncs are required.                        |                   |       |                                      |
|            |          | Third 18 Byte Data Block:                                     |                   |       | See Section 3.10.3.9                 |
| 5A         | 00       | Established Timings III Descriptor                            | 00000000          | 0     | Established Timings III              |
| 5B         | 00       |                                                               | 00000000          | 0     | Display Descriptor                   |
| 5C         | 00       |                                                               | 00000000          | 0     |                                      |
| 5D         | F7       | = Established Timings III Block Tag                           | 11110111          | 247   |                                      |
| 5E         | 00       |                                                               | 00000000          | 0     |                                      |

| 60       F7 $640x400@85Hz, \\ 720x400@85Hz, \\ 800x600@85Hz, \\ 800x600@85Hz, \\ 1152x864@75Hz are supported.       11110111       247         61       0F       11280x960@65Hz, \\ 1280x960@65Hz, \\ 1280x960@65Hz, \\ 1280x960@65Hz, \\ 1280x1024@65Hz, \\ 1280x1024@65Hz, \\ 1280x1024@65Hz, \\ 1600x1200@60Hz, \\ 1600x1200@60Hz, \\ 1600x1200@60Hz, \\ 1600x1200@60Hz, \\ 1600x1200@75Hz, \\ 1600x1200@60Hz, \\ 1000x100& 0000000 0 \\ \hline \\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Address  | Value | Function                                                                                                  | Value    | Value |                                               |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-------|-----------------------------------------------------------------------------------------------------------|----------|-------|-----------------------------------------------|
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | /Offset  | HEX   | Description                                                                                               | BIN      | DEC   | Notes                                         |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5F       | 0A    | = VESA DMT Standard Version #10                                                                           | 00001010 | 10    | See Section 3.10.3.9                          |
| 61       0F $\frac{1}{1}$ 1280x960@85Hz,<br>1280x1024@0Hz,<br>1280x1024@85Hz       00001111       15         62       03 $\frac{1}{1}$ 1400x1050@60Hz (Normal Blanking),<br>1400x1050@75Hz are supported.       00000011       3         63       87 $\frac{1}{1}$ 1400x1050@60Hz,<br>1600x1200@65Hz,<br>1600x1200@75Hz,<br>1600x1200@75Hz,<br>1600x1200@75Hz,<br>1600x1200@75Hz,<br>1600x1200@75Hz,<br>1600x1200@75Hz,<br>1600x1200@75Hz,<br>1600x1200@75Hz,<br>1600x1200@75Hz,<br>1600x1200@75Hz,<br>1600x1200@75Hz,<br>1600x1200@75Hz,<br>00000000       11000000       192         64       C0 $\frac{1}{1}$ 1600x1200@75Hz,<br>1600x1200@75Hz,<br>1600x1200@75Hz,<br>1600x1200@75Hz,<br>00000000       11000000       192         65       00       = Reserved set to '00h'       00000000       0         68       00       = Reserved set to '00h'       00000000       0         64       C0       Monitor Name ASCII Descriptor       000000000       0         60       00       = Reserved set to '00h'       000000000       0         66       00       = Reserved set to '00h'       000000000       0       0         70       00       = Reserved set to '00h'       000000000       0       0         71       41       = A       01000001       65       0         72       42       = B <th>60</th> <th>F7</th> <th>- 640x400@85Hz,<br/>- 720x400@85Hz,<br/>- 640x480@85Hz,<br/>- 800x600@85Hz,<br/>- 1024x768@85Hz,</th> <th>11110111</th> <th>247</th> <th>Established Timings III<br/>Display Descriptor</th> | 60       | F7    | - 640x400@85Hz,<br>- 720x400@85Hz,<br>- 640x480@85Hz,<br>- 800x600@85Hz,<br>- 1024x768@85Hz,              | 11110111 | 247   | Established Timings III<br>Display Descriptor |
| 62       03 $\overline{I}$ 1400x1050@075Hz are supported.       00000011       3         63       87 $\overline{I}$ 1400x1050@05Hz,<br>1600x1200@06Hz,<br>1600x1200@05Hz,<br>1600x1200@70Hz are supported.       10000111       135         64       C0 $\overline{I}$ 1600x1200@70Hz are supported.       11000000       192         65       00       = 1920 PC Timings are not supported.       00000000       0         65       00       = Reserved set to '00h'       00000000       0         68       00       = Reserved set to '00h'       00000000 0       0         68       00       = Reserved set to '00h'       00000000 0       0         68       00       = Reserved set to '00h'       00000000 0       0         68       00       = Reserved set to '00h'       00000000 0       0         68       00       = Reserved set to '00h'       00000000 0       0         70       00       = Reserved set to '00h'       00000000 0       0         71       41       = A       01000010       66         72       42       = B       01000010       66         73       43       = C       01000001       65       11000000 </th <th>61</th> <th>0F</th> <th><math>\frac{1}{1}</math> 1280x960@85Hz,<br/>1 1280x1024@60Hz</th> <th>00001111</th> <th>15</th> <th></th>                                                                                                                                                                                                                                          | 61       | 0F    | $\frac{1}{1}$ 1280x960@85Hz,<br>1 1280x1024@60Hz                                                          | 00001111 | 15    |                                               |
| 63       87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 62       | 03    | $\overline{\perp}$ 1400x1050@60Hz (Normal Blanking),<br>$\underline{\perp}$ 1400x1050@75Hz are supported. | 00000011 | 3     |                                               |
| 64 $C0$ $H = 1600x1200@85Hz are supported.       1100000 192 65 00 = 1920 PC Timings are not supported.       00000000 0 66 00 = Reserved set to '00h' 00000000 0 67 00 = Reserved set to '00h' 00000000 0 68 00 = Reserved set to '00h' 00000000 0 68 00 = Reserved set to '00h' 00000000 0 64 00 = Reserved set to '00h' 00000000 0 64 00 = Reserved set to '00h' 00000000 0 66 00 = Reserved set to '00h' 00000000 0 6C 00       Monitor Name ASCII Descriptor       000000000 0 6F FC = Monitor Name Tag 11111100 252 70 00 = A 01000010 65 72 42 = B 01000000 32 75 50 = P 01000000 32 63871600x1200@60Hz,1600x1200@65Hz,10000111135$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 63       | 87    | 1600x1200@60Hz,<br>1600x1200@65Hz,                                                                        | 10000111 | 135   |                                               |
| 66 $00$ = Reserved set to '00h' $0000000$ $0$ $67$ $00$ = Reserved set to '00h' $0000000$ $0$ $68$ $00$ = Reserved set to '00h' $0000000$ $0$ $69$ $00$ = Reserved set to '00h' $0000000$ $0$ $64$ $00$ = Reserved set to '00h' $0000000$ $0$ $6B$ $00$ = Reserved set to '00h' $0000000$ $0$ $6B$ $00$ = Reserved set to '00h' $00000000$ $0$ $6B$ $00$ = Reserved set to '00h' $00000000$ $0$ $6C$ $00$ Monitor Name ASCII Descriptor $00000000$ $0$ $6E$ $00$ = Monitor Name Tag $11111100$ $252$ $70$ $00$ $00000000$ $0$ $71$ $41$ = A $01000011$ $65$ $72$ $42$ = B $01000001$ $65$ $73$ $43$ = C $01000001$ $65$ $74$ $20$ = Space $00100000$ $32$ $75$ $50$ = P $01010000$ $80$ $76$ $4C$ = L $0100001$ $53$ $78$ $35$ = 5 $0011011$ $53$ $79$ $35$ = 5 $0010000$ $32$ $7C$ $20$ = Space $0010000$ $32$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |       | $\perp$ 1600x1200@85Hz are supported.                                                                     | 11000000 | 192   |                                               |
| 67 $00$ = Reserved set to '00h' $0000000$ $0$ $68$ $00$ = Reserved set to '00h' $0000000$ $0$ $69$ $00$ = Reserved set to '00h' $0000000$ $0$ $6A$ $00$ = Reserved set to '00h' $00000000$ $0$ $6B$ $00$ = Reserved set to '00h' $00000000$ $0$ $6B$ $00$ = Reserved set to '00h' $00000000$ $0$ $6C$ $00$ = Reserved set to '00h' $00000000$ $0$ $6C$ $00$ = Reserved set to '00h' $00000000$ $0$ $6C$ $00$ Monitor Name ASCII Descriptor $00000000$ $0$ $6E$ $000$ = Monitor Name Tag $1111100$ $252$ $70$ $000$ = M $0100001$ $65$ $72$ $42$ = B $01000001$ $65$ $73$ $43$ = C $01010000$ $32$ $76$ $4C$ = L $01001100$ $76$ $77$ $41$ $= A$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 65       | 00    | - · · · ·                                                                                                 | 00000000 | 0     |                                               |
| 68 $00$ = Reserved set to '00h' $0000000$ $0$ $69$ $00$ = Reserved set to '00h' $0000000$ $0$ $6A$ $00$ = Reserved set to '00h' $0000000$ $0$ $6B$ $00$ = Reserved set to '00h' $00000000$ $0$ $6B$ $00$ = Reserved set to '00h' $00000000$ $0$ $Fourth 18$ Byte Data Block:       See Section 3.10.3.4 $6C$ $00$ Monitor Name ASCII Descriptor $00000000$ $0$ $6E$ $00$ $00000000$ $0$ $00000000$ $0$ $6F$ $FC$ = Monitor Name Tag $11111100$ $252$ $00000000$ $0$ $71$ $41$ $= A$ $01000010$ $65$ $01000011$ $67$ $74$ $20$ $=$ Space $01010000$ $32$ $01010000$ $80$ $01010100$ $76$ $77$ $41$ $= A$ $01000011$ $65$ $00110101$ $53$ $79$ $35$ $= 5$ $00110101$ $53$ $74$ $0A$ <th></th> <th>00</th> <th>= Reserved set to '00h'</th> <th>00000000</th> <th>0</th> <th></th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          | 00    | = Reserved set to '00h'                                                                                   | 00000000 | 0     |                                               |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 67       | 00    | = Reserved set to '00h'                                                                                   | 00000000 |       |                                               |
| 6A $00$ = Reserved set to '00h' $0000000$ $0$ $6B$ $00$ = Reserved set to '00h' $0000000$ $0$ Fourth 18 Byte Data Block:See Section 3.10.3.4 $6C$ $00$ Monitor Name ASCII Descriptor $00000000$ $0$ $6E$ $00$ = Monitor Name Tag $11111100$ $252$ $70$ $00$ = Monitor Name Tag $11111100$ $252$ $70$ $00$ = B $01000010$ $66$ $73$ $43$ = C $0100001$ $66$ $73$ $43$ = C $0100000$ $32$ $76$ $4C$ = L $01010000$ $80$ $76$ $4C$ = L $0100100$ $65$ $78$ $35$ = 5 $00110101$ $53$ $79$ $35$ = 5 $00110101$ $53$ $7A$ $0A$ = Line Feed $00010000$ $32$ $7C$ $20$ = Space $00100000$ $32$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 68       | 00    |                                                                                                           | 00000000 |       |                                               |
| 6B00= Reserved set to '00h'00000000Fourth 18 Byte Data Block:Monitor Name ASCII Descriptor0000000006C000000000006E000000000006FFC= Monitor Name Tag1111110025270000000000007141= A0100001657242= B0100001657343= C0100001667420= Space0101000032764C= L0100001657835= 500110101537935= 500110101537A0A= Line Feed00000000327C20= Space0010000032                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |       |                                                                                                           |          |       |                                               |
| Fourth 18 Byte Data Block:See Section 3.10.3.46C00Monitor Name ASCII Descriptor $00000000$ 06E00Monitor Name Tag $11111100$ 2527000 $00000000$ 06FFC= Monitor Name Tag $01000000$ 07141= A $0100001$ 657242= B $0100001$ 667343= C $0100001$ 667420= Space $00100000$ 327550= P $01010000$ 80764C= L $0100001$ 657835= 5 $00110101$ 537935= 5 $00110101$ 537A0A= Line Feed $0000000$ $0000000$ 7B20= Space $00100000$ 32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          |       |                                                                                                           |          |       |                                               |
| 6C00Monitor Name ASCII Descriptor $00000000$ 06E00= Monitor Name Tag $00000000$ 06FFC= Monitor Name Tag $11111100$ $252$ 7000= A $01000000$ 07141= A $01000010$ 657242= B $0100001$ 667343= C $0100001$ 667420= Space $00100000$ 327550= P $0100000$ 80764C= L $0100001$ 657835= 5 $00110100$ 767935= 5 $00110101$ 537A0A= Line Feed $0000000$ $00100000$ 7B20= Space $00100000$ 32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 6B       | 00    |                                                                                                           | 00000000 | 0     |                                               |
| 6D $00$ $6E$ $00$ $6F$ $FC$ $70$ $00$ $71$ $41$ $= A$ $0100000$ $71$ $41$ $= A$ $0100001$ $65$ $72$ $42$ $= B$ $73$ $43$ $= C$ $74$ $20$ $= Space$ $76$ $4C$ $= L$ $77$ $41$ $= A$ $0100000$ $35$ $76$ $4C$ $= L$ $78$ $35$ $79$ $35$ $78$ $20$ $78$ $20$ $76$ $20$ $= Space$ $0010000$ $32$ $76$ $20$ $= Space$ $0010000$ $32$ $76$ $20$ $= Space$ $0010000$ $32$ $70$ $20$ $= Space$ $00100000$ $32$ $76$ $20$ $= Space$ $00100000$ $32$ $70$ $20$ $= Space$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          |       |                                                                                                           |          |       | See Section 3.10.3.4                          |
| 6E $00$ $6F$ $FC$ = Monitor Name Tag $00000000$ $0$ $71$ $41$ = A $01000001$ $65$ $72$ $42$ = B $0100001$ $66$ $73$ $43$ = C $0100001$ $66$ $73$ $43$ = C $0100001$ $66$ $74$ $20$ = Space $00100000$ $32$ $76$ $4C$ = L $0101000$ $80$ $76$ $4C$ = L $0100001$ $65$ $78$ $35$ = 5 $00110100$ $53$ $79$ $35$ = 5 $00110101$ $53$ $7A$ $0A$ = Line Feed $00001010$ $10$ $7R$ $20$ = Space $00100000$ $32$ $7C$ $20$ = Space $00100000$ $32$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |       | Monitor Name ASCII Descriptor                                                                             |          |       |                                               |
| 6FFC= Monitor Name Tag $11111100$ $252$ $70$ $00$ $= A$ $01000000$ $0$ $71$ $41$ $= A$ $0100001$ $65$ $72$ $42$ $= B$ $0100001$ $66$ $73$ $43$ $= C$ $0100001$ $66$ $74$ $20$ $=$ Space $00100000$ $32$ $75$ $50$ $= P$ $01010000$ $80$ $76$ $4C$ $= L$ $01001100$ $76$ $77$ $41$ $= A$ $0100001$ $65$ $78$ $35$ $= 5$ $00110101$ $53$ $79$ $35$ $= 5$ $00110101$ $53$ $7A$ $0A$ $=$ Line Feed $00001010$ $10$ $7R$ $20$ $=$ Space $00100000$ $32$ $7C$ $20$ $=$ Space $00100000$ $32$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |       |                                                                                                           | -        |       |                                               |
| 70 $00$ $0000000$ $0$ $71$ $41$ $= A$ $0100001$ $65$ $72$ $42$ $= B$ $0100010$ $66$ $73$ $43$ $= C$ $0100001$ $67$ $74$ $20$ $=$ Space $00100000$ $32$ $75$ $50$ $= P$ $0101000$ $80$ $76$ $4C$ $= L$ $0100110$ $76$ $77$ $41$ $= A$ $0100001$ $65$ $78$ $35$ $= 5$ $00110101$ $53$ $79$ $35$ $= 5$ $00110101$ $53$ $7A$ $0A$ $=$ Line Feed $0000000$ $32$ $7C$ $20$ $=$ Space $00100000$ $32$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          |       |                                                                                                           |          |       |                                               |
| 71 $41$ $= A$ $0100001$ $65$ $72$ $42$ $= B$ $0100001$ $66$ $73$ $43$ $= C$ $0100001$ $66$ $73$ $43$ $= C$ $0100001$ $67$ $74$ $20$ $=$ Space $0010000$ $32$ $75$ $50$ $= P$ $0101000$ $80$ $76$ $4C$ $= L$ $0100001$ $65$ $77$ $41$ $= A$ $0100001$ $65$ $78$ $35$ $= 5$ $00110101$ $53$ $79$ $35$ $= 5$ $00110101$ $53$ $7A$ $0A$ $=$ Line Feed $0000000$ $32$ $7C$ $20$ $=$ Space $00100000$ $32$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |       | = Monitor Name Tag                                                                                        |          |       |                                               |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |       |                                                                                                           |          |       |                                               |
| 73 $43$ $= C$ $01000011$ $67$ $74$ $20$ $=$ Space $00100000$ $32$ $75$ $50$ $= P$ $01010000$ $80$ $76$ $4C$ $= L$ $01001100$ $76$ $77$ $41$ $= A$ $01000001$ $65$ $78$ $35$ $= 5$ $00110101$ $53$ $79$ $35$ $= 5$ $00110101$ $53$ $7A$ $0A$ $=$ Line Feed $00001010$ $10$ $7B$ $20$ $=$ Space $00100000$ $32$ $7C$ $20$ $=$ Space $00100000$ $32$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |          |       |                                                                                                           |          |       |                                               |
| 74 $20$ = Space $00100000$ $32$ $75$ $50$ = P $01010000$ $80$ $76$ $4C$ = L $0100100$ $80$ $77$ $41$ = A $0100001$ $65$ $78$ $35$ = 5 $00110101$ $53$ $79$ $35$ = 5 $00110101$ $53$ $7A$ $0A$ = Line Feed $000001010$ $10$ $7B$ $20$ = Space $00100000$ $32$ $7C$ $20$ = Space $00100000$ $32$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          |       |                                                                                                           |          |       |                                               |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |       |                                                                                                           |          |       |                                               |
| 76 $4C$ $= L$ $01001100$ $76$ $77$ $41$ $= A$ $01001100$ $76$ $78$ $35$ $= 5$ $00101001$ $65$ $79$ $35$ $= 5$ $00110101$ $53$ $7A$ $0A$ $= Line Feed$ $00001010$ $10$ $7B$ $20$ $= Space$ $00100000$ $32$ $7C$ $20$ $= Space$ $00100000$ $32$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          |       |                                                                                                           |          |       |                                               |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |       |                                                                                                           |          |       |                                               |
| 78 $35$ $= 5$ $00110101$ $53$ $79$ $35$ $= 5$ $00110101$ $53$ $7A$ $0A$ $=$ Line Feed $00010101$ $10$ $7B$ $20$ $=$ Space $00100000$ $32$ $7C$ $20$ $=$ Space $00100000$ $32$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          |       |                                                                                                           |          |       |                                               |
| 79 $35$ $= 5$ $00110101$ $53$ $7A$ $0A$ $=$ Line Feed $00001010$ $10$ $7B$ $20$ $=$ Space $00100000$ $32$ $7C$ $20$ $=$ Space $00100000$ $32$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          |       |                                                                                                           |          |       |                                               |
| 7A $0A$ = Line Feed $00001010$ $10$ $7B$ $20$ = Space $00100000$ $32$ $7C$ $20$ = Space $00100000$ $32$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          |       |                                                                                                           |          |       |                                               |
| 7B $20$ $=$ Space $00100000$ $32$ $7C$ $20$ $=$ Space $00100000$ $32$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |       |                                                                                                           | -        |       |                                               |
| 7C 20 = Space 00100000 32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |       |                                                                                                           |          |       |                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |       | -                                                                                                         |          |       |                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 7C<br>7D | 20    | = Space                                                                                                   | 00100000 | 32    |                                               |
| 7E $01$ $=$ Space $0010000$ $32$ $7E$ $01$ $=$ Extension Flag $00000001$ $1$ See Section 3.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          |       |                                                                                                           |          |       | See Section 3 11                              |
| 7E $01$ $=$ Exclusion riag $0000001$ $1$ See Section 5.11 $7F$ $0A$ $=$ Checksum $00001010$ $10$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |       |                                                                                                           |          |       | 500 500000 5.11                               |

| Address | Value<br>HEX | Function                                                                                                                                                                                                  | Value<br>BIN | Value<br>DEC | Notes                                    |
|---------|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|--------------|------------------------------------------|
| /Offset | пел          | Description CEA 861 EXTENSION Block – Version 3                                                                                                                                                           | DIN          | DEC          | Notes<br>Refer to CEA 861                |
|         |              | (Block 1)                                                                                                                                                                                                 |              |              | Standard for definitions                 |
| 80      | 02           | <b>I</b> CEA 861 EXTENSION Block Tag Code                                                                                                                                                                 | 00000010     | 2            | of the data fields contained in Block 1. |
| 81      | 03           | = CEA 861 EXTENSION Block Version #3                                                                                                                                                                      | 00000011     | 3            |                                          |
| 82      | 17           | $\underline{\overline{I}}_{99h}^{\text{Detail Timing Descriptors start at address}}$                                                                                                                      | 00011000     | 24           |                                          |
| 83      | F0           | Underscan is supported.<br>Basic Audio is supported.<br>YCbCr 4:4:4 & YCbCr 4:2:2 are<br>supported.<br>Number of native formats is 0                                                                      | 11110000     | 240          |                                          |
| 84      | 46           | Video Data Block Tag Code is 2.<br>Number of Short Video Descriptor Bytes<br>is 6.                                                                                                                        | 01000110     | 70           |                                          |
| 85      | 05           | $\boxed{\boxed{1920x1080i 59.94/60 \text{ Hz } 16:9 \text{ AR}}}$ $\boxed{10000000000000000000000000000000000$                                                                                            | 00000101     | 5            |                                          |
| 86      | 04           | $\overline{\underline{I}} \begin{array}{c} 1280x720p 59.94/60 \text{ Hz } 16:9 \text{ AR (CEA} \\ \overline{\underline{I}} \begin{array}{c} Format \#4 \end{array} is a supported format. \end{array}$    | 00000100     | 4            |                                          |
| 87      | 03           | $\overline{\underline{I}} \begin{array}{c} 720x480p 59.94/60 \text{ Hz } 16:9 \text{ AR (CEA} \\ \overline{\underline{I}} \begin{array}{c} Format \#3 \end{array} \right) \text{ is a supported format.}$ | 00000011     | 3            |                                          |
| 88      | 02           | $\overline{\underline{II}} 720x480p 59.94/60 \text{ Hz } 4:3 \text{ AR (CEA}$<br>Format #2) is a supported format.                                                                                        | 00000010     | 2            |                                          |
| 89      | 07           | $\overline{\underline{I}}$ 720x480i 59.94/60 Hz 16 : 9 AR (CEA<br>Format #7) is a supported format.                                                                                                       | 00000111     | 7            |                                          |
| 8A      | 06           | $\overline{\underline{I}}$ 720x480i 59.94/60 Hz 4 : 3 AR (CEA<br>Format #6) is a supported format.                                                                                                        | 00000110     | 6            |                                          |
| 8B      | 23           | Audio Data Block Tag Code is 1.<br>Number of Short Audio Descriptor Bytes<br>is 3.                                                                                                                        | 00100011     | 35           |                                          |
| 8C      | 09           | Audio Format Tag Code is 1 LPCM is<br>supported. Maximum number of audio<br>channels is 2.                                                                                                                | 00001001     | 9            |                                          |
| 8D      | 07           | <u>■</u> Supported Sampling Frequencies include:<br><u>■</u> 48kHz; 44.1kHz & 32kHz.                                                                                                                      | 00000111     | 7            |                                          |
| 8E      | 07           | $\overline{\underline{I}} \begin{array}{l} \text{Supported Sampling Bit Rates include:} \\ \underline{\overline{I}} \begin{array}{l} 24 \text{ bit; } 20 \text{ bit } \& 16 \text{ bit.} \end{array}$     | 0000111      | 7            |                                          |
| 8F      | 83           | Speaker Allocation Block Tag Code is 4.<br>Number of Speaker Allocation<br>Descriptor Bytes is 3.                                                                                                         | 10000011     | 131          |                                          |
| 90      | 01           | ☐ Speaker Allocation is Front-Left &<br>☐ Front-Right.                                                                                                                                                    | 00000001     | 1            |                                          |
| 91      | 00           | = Reserved (Shall be 00h).                                                                                                                                                                                | 00000000     | 0            |                                          |
| 92      | 00           | = Reserved (Shall be 00h).                                                                                                                                                                                | 00000000     | 0            |                                          |

| 9365 $\begin{tabular}{ c c c c c } \end{tabular}$ Vendor Specific Data Block Tag Code<br>is 3. Number of Vendor Specific Data01100101109403<br>Bytes is 5. $\begin{tabular}{ c c c c c c } \end{tabular}$ $\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ECNotes013312016001600Descriptor - 1920x108029@60Hz Interlaced28(1080i DTV Timing)24(CEA Format #5)                                                                                                                         |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 9365II is 3. Number of Vendor Specific Data01100101109403The 24 bit IEEE Registration Identifier0000001133950CThe 24 bit IEEE Registration Identifier0000011019600The 24 bit IEEE Registration Identifier0000011019600The 24 bit IEEE Registration Identifier0000011019600The 24 bit IEEE Registration Identifier00000110019710The Vendor Specific Data is '1000h'.10000000109800The Vendor Specific Data is '1000h'.10000000109800The Pixel Clock00001110129901Therizontal Addressable Video10000000109011Is 1920 pixels. Horizontal0001110029171Ibanking is 280 pixels.0111100011921CTherizontal Addressable Video is0001110029516Ibanking is 221 lines.001000003A158Thorizontal Front Porch is 88 pixels.010110008A22CIbanking is 25Vertical Front Porch is 2 lines.001011004A325Ibanking Front Porch is 2 lines.001001013                                                                                                                                                        | 3                                                                                                                                                                                                                           |
| 95 $0C$ $\parallel$ is '000C03h'. $00001100$ $1$ 96 $00$ $\parallel$ is '000C03h'. $0000000$ $0$ 97 $10$ $\blacksquare$ Vendor Specific Data is '1000h'. $10000000$ $10000000$ 98 $00$ $\blacksquare$ Vendor Specific Data is '1000h'. $10000000$ $10000000$ 98 $00$ $\blacksquare$ Pixel Clock $00000000$ $10000000$ 99 $01$ $\blacksquare$ Pixel Clock $00001100$ $12$ 98 $80$ $\blacksquare$ Horizontal Addressable Video $10000000$ $12$ 9B $80$ $\blacksquare$ Horizontal Addressable Video $10000000$ $12$ 9D $71$ $\blacksquare$ Blanking is 280 pixels. $01111000$ $12$ 9F $16$ $\blacksquare$ 540 lines. Vertical Blanking $00011100$ $2$ 9F $16$ $\blacksquare$ Horizontal Front Porch is 88 pixels. $01011000$ $8$ A1 $58$ $\blacksquare$ Horizontal Sync Pulse Width is 44 pixels $00101100$ $4$ A3 $25$ $\blacksquare$ Vertical Front Porch is 2 lines. $00100101$ $3$                                                                                                  | 12           0           16           0           Detailed Timing           Descriptor - 1920x1080           29           @60Hz Interlaced           28           (1080i DTV Timing)           24           (CEA Format #5) |
| 9600 $\downarrow$ 00000000009710 $\mp$ Vendor Specific Data is '1000h'.10000000100000009800 $\mp$ Fifth 18 Byte Data Block:00000000100000009901 $\mp$ Pixel Clock00000001119A1D $\mp$ Pixel Clock00001101229B80 $\mp$ Horizontal Addressable Video10000000129D71 $\downarrow$ Blanking is 280 pixels.01111000129F16 $\downarrow$ 540 lines. Vertical Blanking00011101229F16 $\downarrow$ 540 lines. Vertical Blanking0010100033A158 $\mp$ Horizontal Sync Pulse Width is 44 pixels0101100044A325 $\downarrow$ Vertical Front Porch is 2 lines.01001010133                                                                                                                                                                                                                                                                                                                                                                                                                            | 0<br>16<br>0<br>Detailed Timing<br>1<br>Descriptor - 1920x1080<br>29<br>@60Hz Interlaced<br>(1080i DTV Timing)<br>24<br>(CEA Format #5)                                                                                     |
| 9710 $\boxed{10000000}$ 19800 $\boxed{1}$ Vendor Specific Data is '1000h'.1000000019800 $\boxed{1}$ Fifth 18 Byte Data Block:0000000009901 $\boxed{11}$ Pixel Clock0000000119A1D $\boxed{11}$ is 74.250 MHz.0001110129B80 $\boxed{11}$ Horizontal Addressable Video10000000129C18 $\boxed{11}$ is 1920 pixels. Horizontal0001100029D71 $\boxed{11}$ Blanking is 280 pixels.01111000119E1C $\boxed{11}$ Vertical Addressable Video is0001110029F16 $\boxed{11}$ 540 lines. Vertical Blanking000101102A020 $\boxed{11}$ Is 22 lines.010100003A158 $\boxed{11}$ Horizontal Front Porch is 88 pixels.010110008A22C $\boxed{11}$ Horizontal Sync Pulse Width is 44 pixels001011004001001013 $\boxed{11}$ Vertical Front Porch is 2 lines.001001013                                                                                                                                                                                                                                        | 160Detailed Timing1Descriptor - 1920x108029@60Hz Interlaced28(1080i DTV Timing)24(CEA Format #5)                                                                                                                            |
| 9800 $\square$ 00000000000000Fifth 18 Byte Data Block:9901 $\prod$ Pixel Clock00000001 $\square$ 9A1D $\square$ is 74.250 MHz.00011101 $2$ 9B80 $\prod$ Horizontal Addressable Video10000000 $12$ 9C18 $\square$ is 1920 pixels. Horizontal00011000 $2$ 9D71 $\square$ Blanking is 280 pixels.01111000 $11$ 9E1C $\prod$ Vertical Addressable Video is00011100 $2$ 9F16 $\square$ 540 lines. Vertical Blanking00010100 $3$ A158 $\prod$ Horizontal Front Porch is 88 pixels.01011000 $8$ A22C $\square$ Horizontal Sync Pulse Width is 44 pixels00101100 $4$ A325 $\square$ Vertical Front Porch is 2 lines.00100101 $3$                                                                                                                                                                                                                                                                                                                                                             | 0<br>Detailed Timing<br>1 Descriptor - 1920x1080<br>@60Hz Interlaced<br>(1080i DTV Timing)<br>24 (CEA Format #5)                                                                                                            |
| 98       00 $=$ 0000000       0000000         Fifth 18 Byte Data Block:         99       01 $\mp$ Pixel Clock       00000001       1         9A       1D $\pm$ is 74.250 MHz.       00011101       2         9B       80 $\mp$ Horizontal Addressable Video       10000000       12         9C       18 $\ddagger$ is 1920 pixels. Horizontal       00011000       2         9D       71 $\blacksquare$ Blanking is 280 pixels.       01111000       11         9E       1C $\mp$ Vertical Addressable Video is       00011100       2         9F       16 $\frac{1}{2}$ 540 lines. Vertical Blanking       00010100       2         A0       20 $\frac{1}{2}$ is 22 lines.       00100000       3         A1       58 $\mp$ Horizontal Front Porch is 88 pixels.       01011000       8         A2       2C $\frac{1}{2}$ Horizontal Sync Pulse Width is 44 pixels       00101100       4         A3       25 $\frac{1}{2}$ Vertical Front Porch is 2 lines.       00100101       3 | Detailed Timing<br>Descriptor - 1920x1080<br>@60Hz Interlaced<br>(1080i DTV Timing)<br>(CEA Format #5)                                                                                                                      |
| 9901 $\overrightarrow{II}$ Pixel Clock000000019A1D $\overrightarrow{II}$ is 74.250 MHz.000111019B80 $\overrightarrow{II}$ Horizontal Addressable Video100000009C18 $\overrightarrow{II}$ is 1920 pixels. Horizontal000110009D71 $\overrightarrow{II}$ Blanking is 280 pixels.011110009E1C $\overrightarrow{II}$ Vertical Addressable Video is000111009F16 $\overrightarrow{II}$ 540 lines. Vertical Blanking00010110A020 $\overrightarrow{II}$ is 22 lines.01010000A158 $\overrightarrow{II}$ Horizontal Sync Pulse Width is 44 pixels01011000A325 $\overrightarrow{II}$ Vertical Front Porch is 2 lines.00100101                                                                                                                                                                                                                                                                                                                                                                    | 1         Descriptor - 1920x1080           29         @60Hz Interlaced           28         (1080i DTV Timing)           24         (CEA Format #5)                                                                         |
| 9A1D $\stackrel{\text{iii}}{=}$ is 74.250 MHz.0001110129B80 $\stackrel{\text{iii}}{=}$ Horizontal Addressable Video10000000129C18 $\stackrel{\text{iii}}{=}$ is 1920 pixels. Horizontal0001100029D71 $\stackrel{\text{iiii}}{=}$ Blanking is 280 pixels.01111000119E1C $\stackrel{\text{iiiii}}{=}$ Vertical Addressable Video is0001110029F16 $\text{iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 29         @60Hz Interlaced           28         (1080i DTV Timing)           24         (CEA Format #5)                                                                                                                    |
| 9B80 $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 28 (1080i DTV Timing)<br>24 (CEA Format #5)                                                                                                                                                                                 |
| 9C18i is 1920 pixels. Horizontal $00011000$ 29D71Blanking is 280 pixels. $01111000$ 119E1C $T$ Vertical Addressable Video is $00011100$ 29F16 $I$ 540 lines. Vertical Blanking $00010100$ 2A020 $I$ is 22 lines. $00100000$ 3A158 $T$ Horizontal Front Porch is 88 pixels. $01011000$ 8A22C $I$ Horizontal Sync Pulse Width is 44 pixels $0010100$ 4A325 $I$ Vertical Front Porch is 2 lines. $00100101$ 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (CEA Format #5)                                                                                                                                                                                                             |
| 9D       71 $\stackrel{\text{JL}}{=}$ Blanking is 280 pixels.       01111000       11         9E       1C $\stackrel{\text{TF}}{=}$ Vertical Addressable Video is       00011100       2         9F       16 $\stackrel{\text{JL}}{=}$ 540 lines. Vertical Blanking       00010100       2         A0       20 $\stackrel{\text{L}}{=}$ is 22 lines.       00100000       3         A1       58 $\stackrel{\text{TF}}{=}$ Horizontal Front Porch is 88 pixels.       01011000       8         A2       2C $\stackrel{\text{TF}}{=}$ Horizontal Sync Pulse Width is 44 pixels       00101100       4         A3       25 $\stackrel{\text{TF}}{=}$ Vertical Front Porch is 2 lines.       00100101       3                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                             |
| 9E         1C         Therefore         Vertical Addressable Video is         00011100         2           9F         16         540 lines. Vertical Blanking         00010110         2           A0         20         is 22 lines.         000100000         3           A1         58         Therizontal Front Porch is 88 pixels.         01011000         8           A2         2C         Horizontal Sync Pulse Width is 44 pixels         00101100         4           A3         25         Vertical Front Porch is 2 lines.         00100101         3                                                                                                                                                                                                                                                                                                                                                                                                                   | $12  (  OD \land O(1 \circ 1 \circ$                                                                                                                         |
| 9F         16         540 lines. Vertical Blanking         00010110         2           A0         20         is 22 lines.         00100000         3           A1         58         Thorizontal Front Porch is 88 pixels.         01011000         8           A2         2C         Horizontal Sync Pulse Width is 44 pixels         00101100         4           A3         25         Vertical Front Porch is 2 lines.         00100101         3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <i></i>                                                                                                                                                                                                                     |
| A0         20         II is 22 lines.         00100000         3           A1         58         Thorizontal Front Porch is 88 pixels.         01011000         8           A2         2C         II Horizontal Sync Pulse Width is 44 pixels         00100101         4           A3         25         Vertical Front Porch is 2 lines.         00100101         3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                             |
| A158T Horizontal Front Porch is 88 pixels.010110008A22CHorizontal Sync Pulse Width is 44 pixels001011004A325Vertical Front Porch is 2 lines.001001013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                             |
| A22C-Horizontal Sync Pulse Width is 44 pixels001011004A325-Vertical Front Porch is 2 lines.001001013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                             |
| A3         25         I         Vertical Front Porch is 2 lines.         00100101         3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                             |
| $\mathbf{I}$ A/I I UU I = Vertical Sync Pulse Width is 5 lines I (0000000) (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 15                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 72                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 56                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0                                                                                                                                                                                                                           |
| AA9ETiming is Interlaced Video,<br>Stereo Video is not Support,<br>Digital Separate + Syncs are required.1001111015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 58                                                                                                                                                                                                                          |
| Sixth 18 Byte Data Block:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Detailed Timing                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 02 Descriptor - 1280x720                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 33 @60Hz Non-Interlaced                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0 (720p DTV Timing)                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\frac{14}{14}  (\text{CEA Format #4})$                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (per CEA861 Standard)                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 08                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\frac{30}{22}$                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <u>32</u><br>10                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 40                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 35                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 05                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 79                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 56                                                                                                                                                                                                                          |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <u>66</u><br>0                                                                                                                                                                                                              |

| Address | Value                       | Function                                                     | Value    | Value |                       |  |  |  |
|---------|-----------------------------|--------------------------------------------------------------|----------|-------|-----------------------|--|--|--|
| /Offset | HEX                         | Description                                                  | BIN      | DEC   | Notes                 |  |  |  |
|         |                             | Timing is Non-Interlaced Video,                              |          |       |                       |  |  |  |
| BC      | 1E                          | F Stereo Video is not Support,                               | 00011110 | 30    |                       |  |  |  |
|         |                             | Digital Separate + Syncs are required.                       |          |       |                       |  |  |  |
|         | Seventh 18 Byte Data Block: |                                                              |          |       |                       |  |  |  |
| BD      | 8C                          | T Pixel Clock                                                | 10001100 | 140   | Descriptor – 720x480  |  |  |  |
| BE      | 0A                          | ≟ is 27.000 MHz.                                             | 00001010 | 10    | @60Hz Non-Interlaced  |  |  |  |
| BF      | D0                          | Tr Horizontal Addressable Video                              | 11010000 | 208   | (480p DTV Timing)     |  |  |  |
| CO      | 8A                          | is 720 pixels. Horizontal                                    | 10001010 | 138   | (CEA Format #3)       |  |  |  |
| C1      | 20                          | Elanking is 138 pixels.                                      | 00100000 | 32    | (per CEA861 Standard) |  |  |  |
| C2      | E0                          | Tr Vertical Addressable Video is                             | 11100000 | 224   |                       |  |  |  |
| C3      | 2D                          | 480 lines. Vertical Blanking                                 | 00101101 | 45    |                       |  |  |  |
| C4      | 10                          | is 45 lines.                                                 | 00010000 | 16    |                       |  |  |  |
| C5      | 10                          | $\pi$ Horizontal Front Porch is 16 pixels.                   | 00010000 | 16    |                       |  |  |  |
| C6      | 3E                          | Horizontal Sync Pulse Width is 62 pixels                     | 00111110 | 62    |                       |  |  |  |
| C7      | 96                          | - Vertical Front Porch is 9 lines.                           | 10010110 | 150   |                       |  |  |  |
| C8      | 00                          | Leventical Sync Pulse Width is 6 lines.                      | 00000000 | 0     |                       |  |  |  |
| С9      | B9                          | T Horizontal Addressable Image Size                          | 10111001 | 185   |                       |  |  |  |
| СА      | 88                          | is 1039 mm. Vertical Addressable                             | 10001000 | 136   |                       |  |  |  |
| СВ      | 21                          | ⊥ Image Size is 584 mm.                                      | 00100001 | 33    |                       |  |  |  |
| CC      | 00                          | = Horizontal Border Size is 0 pixels.                        | 00000000 | 0     |                       |  |  |  |
| CD      | 00                          | = Vertical Border Size is 0 lines.                           | 00000000 | 0     |                       |  |  |  |
|         |                             |                                                              |          |       |                       |  |  |  |
| CE      | 18                          | ⋕ Stereo Video is not Support,                               | 00011000 | 24    |                       |  |  |  |
|         |                             | □ Digital Separate Syncs are required.                       |          |       |                       |  |  |  |
|         |                             | <u>Eighth 18 Byte Data Block:</u>                            |          |       | Detailed Timing       |  |  |  |
| CF      | 8E                          | ਜ਼ Pixel Clock                                               | 10001110 | 142   | Descriptor – 720x480  |  |  |  |
| D0      | 0A                          | <u>⊥</u> is 27.027 MHz.                                      | 00001010 | 10    | @60Hz Interlaced      |  |  |  |
| D1      | A0                          | THORIZONTAL Addressable Video                                | 10100000 | 160   | (480i DTV Timing)     |  |  |  |
| D2      | 14                          | is 1440 pixels. Horizontal                                   | 00010100 | 20    | (CEA Format #7)       |  |  |  |
| D3      | 51                          | H Blanking is 276 pixels.                                    | 01010001 | 81    | (per CEA861 Standard) |  |  |  |
| D4      | F0                          | Tr Vertical Addressable Video is                             | 11110000 | 240   |                       |  |  |  |
| D5      | 16                          | ┨ 240 lines. Vertical Blanking                               | 00010110 | 22    |                       |  |  |  |
| D6      | 00                          | ⊥ is 23 lines.                                               | 00000000 | 0     |                       |  |  |  |
| D7      | 26                          | $\overline{\mathbf{T}}$ Horizontal Front Porch is 38 pixels. | 00100110 | 38    |                       |  |  |  |
| D8      | 7C                          | Horizontal Sync Pulse Width is 124 pix.                      | 01111100 | 124   |                       |  |  |  |
| D9      | 43                          | - Vertical Front Porch is 4 lines.                           | 01000011 | 67    |                       |  |  |  |
| DA      | 00                          | <sup>⊥</sup> Vertical Sync Pulse Width is 3 lines.           | 00000000 | 0     |                       |  |  |  |
| DB      | B9                          | THorizontal Addressable Image Size                           | 10111001 | 185   |                       |  |  |  |
| DC      | 88                          | is 1039 mm. Vertical Addressable                             | 10001000 | 136   |                       |  |  |  |
| DD      | 21                          | ⊥ Image Size is 584 mm.                                      | 00100001 | 33    |                       |  |  |  |
| DE      | 00                          | = Horizontal Border Size is 0 pixels.                        | 0000000  | 0     |                       |  |  |  |
| DF      | 00                          | = Vertical Border Size is 0 lines.                           | 0000000  | 0     |                       |  |  |  |
| EO      | 98                          | Timing is Interlaced Video,<br>Stereo Video is not Support,  | 10011000 | 152   |                       |  |  |  |
| EU      | 90                          | Digital Separate Syncs are required.                         | 10011000 | 132   |                       |  |  |  |
|         |                             | Bighai Separate Synes are required.                          |          |       |                       |  |  |  |

| Address | Value | Function    | Value    | Value |       |
|---------|-------|-------------|----------|-------|-------|
| /Offset | HEX   | Description | BIN      | DEC   | Notes |
| E1      | 00    | = No Data   | 00000000 | 0     |       |
| E2      | 00    | = No Data   | 00000000 | 0     |       |
| E3      | 00    | = No Data   | 00000000 | 0     |       |
| E4      | 00    | = No Data   | 00000000 | 0     |       |
| E5      | 00    | = No Data   | 00000000 | 0     |       |
| E6      | 00    | = No Data   | 00000000 | 0     |       |
| E7      | 00    | = No Data   | 00000000 | 0     |       |
| E8      | 00    | = No Data   | 00000000 | 0     |       |
| E9      | 00    | = No Data   | 00000000 | 0     |       |
| EA      | 00    | = No Data   | 00000000 | 0     |       |
| EB      | 00    | = No Data   | 00000000 | 0     |       |
| EC      | 00    | = No Data   | 00000000 | 0     |       |
| ED      | 00    | = No Data   | 00000000 | 0     |       |
| EE      | 00    | = No Data   | 00000000 | 0     |       |
| EF      | 00    | = No Data   | 00000000 | 0     |       |
| FO      | 00    | = No Data   | 00000000 | 0     |       |
| F1      | 00    | = No Data   | 00000000 | 0     |       |
| F2      | 00    | = No Data   | 00000000 | 0     |       |
| F3      | 00    | = No Data   | 00000000 | 0     |       |
| F4      | 00    | = No Data   | 00000000 | 0     |       |
| F5      | 00    | = No Data   | 00000000 | 0     |       |
| F6      | 00    | = No Data   | 00000000 | 0     |       |
| F7      | 00    | = No Data   | 00000000 | 0     |       |
| F8      | 00    | = No Data   | 00000000 | 0     |       |
| F9      | 00    | = No Data   | 00000000 | 0     |       |
| FA      | 00    | = No Data   | 00000000 | 0     |       |
| FB      | 00    | = No Data   | 00000000 | 0     |       |
| FC      | 00    | = No Data   | 00000000 | 0     |       |
| FD      | 00    | = No Data   | 00000000 | 0     |       |
| FE      | 00    | = No Data   | 00000000 | 0     |       |
| FF      | 5A    | = Checksum  | 01011010 | 90    |       |

End of example 3

## 7. APPENDIX B – GTF & CVT Compatibility Issues

The following table list some issues related to the forward and backward compatibility of GTF and CVT generated standard timings in hosts (sources).

| $\sim$                                                                                                  | EDID 1.0 & 1.1                                                                                                                                                                                                                                                 | EDID 1.2 & 1.3                                                                                                                                                                                                                           | EDID 1.4                                                                                                                             |
|---------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                         | <b>Display Device</b>                                                                                                                                                                                                                                          | <b>Display Device</b>                                                                                                                                                                                                                    | <b>Display Device</b>                                                                                                                |
| Host supports<br>EDID data<br>structure                                                                 | GTF & CVT were not<br>standards no support<br>in EDID 1.0 & 1.1.                                                                                                                                                                                               | EDID 1.2 & 1.3 provides<br>support for GTF. CVT<br>was not a VESA                                                                                                                                                                        | EDID 1.4 provides support for both GTF & CVT.                                                                                        |
| definitions up to<br>1.3<br>Host supports GTF<br>but does not<br>support CVT.                           | Standard timings are<br>derived only from the<br>VESA and Industry<br>Standards and<br>Guidelines for Computer<br>Display Monitor Timing                                                                                                                       | standard.<br>If the desired standard<br>timing is a DMT, then<br>use the DMT definition,<br>otherwise use GTF to<br>define the timing                                                                                                    | If the desired standard timing<br>is a DMT, then use the DMT<br>definition, otherwise use<br>GTF to define the timing<br>parameters. |
| Host supports<br>EDID data<br>structure<br>definitions up to<br>1.4<br>Host supports both<br>CVT & GTF. | (DMT) Document.<br>GTF & CVT were not<br>VESA standards no<br>support in EDID 1.0 &<br>1.1.<br><br>Standard timings are<br>derived using only the<br>VESA and Industry<br>Standards and<br>Guidelines for Computer<br>Display Monitor Timing<br>(DMT) Document | parameters.<br>EDID 1.2 & 1.3 provides<br>support for GTF. CVT<br>was not a VESA<br>standard.<br>If the desired standard<br>timing is a DMT, then<br>use the DMT definition,<br>otherwise use GTF to<br>define the timing<br>parameters. | EDID 1.4 provides support<br>for both GTF & CVT.<br>                                                                                 |

#### Notes:

- 1.) The following requirements are for the source (host) device:
  - 1.1) For a 1.4 compliant source, if Byte 10 (Table 3.26) in the display range limit descriptor is set to a value of "00h" (default GTF support) or "02h" (GTF Secondary Curve support), then any format indicated in the standard timing section (Section 3.9) that does not have a matching DMT shall be derived using the GTF formula.
  - 1.2) For a 1.4 complaint source, if Byte 10 (Table 3.26) in the display range limit descriptor is set to a value of "04h" (CVT support), then any format listed in the standard timing section that does not have a matching DMT shall be derived using the CVT formula with normal blanking, non-interlaced & no-borders.
  - 1.3) For a 1.4 complaint source, if a display range limit descriptor is not listed in EDID, then any format listed in the standard timing section that does not have a matching DMT shall be derived using the CVT formula with normal blanking, non-interlaced & no-borders.
  - 1.4) For a legacy source (supports EDID 1.3 or 1.2), if a display range limit descriptor is or is not listed in EDID, any format listed in the standard timing section that does not have a matching DMT would be driven using the GTF formula.
- 2.) The following requirements are for the sink device (display):
  - 2.1) Legacy sink devices (supports EDID 1.3 or 1.2) shall support GTF generated timing modes for formats listed in the standard timing section that do not have matching DMTs.
  - 2.2) To ensure compatibility with all sources, new sink devices (supports EDID 1.4) shall support both GTF and CVT variant of the timing reported in the standard timing section for formats that do not have a matching DMTs

3.) A source (host) may support EDID data structure definitions up to version 1.4 (or 1.3) and may not support CVT (or GTF). In this case, the source shall ignore any standard timing (based on the CVT or GTF formula) not listed as a DMT and the source shall not include these video timing formats in the host's list of available formats.

4.) Priority Rule: "CVT has priority over GTF." Exception to this rule: If the use of CVT will result in a forward or backward compatibility issue, then use GTF.

5.) There is a difference between a source that supports CVT (or GTF) and a source that is CVT (or GTF) compliant. Some sources may not be CVT (or GTF) compliant (per the VESA CVT or GTF Standards). This type of host may not be able to generate all CVT (or GTF) video timing formats that are within the display range limits. However, some of these sources may be able to generate a limited number of standard timings using the CVT (or GTF) formula.

# 8. APPENDIX C - Glossary

| Ref. # | Term                   | Definition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|--------|------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| C-1    | Active Video<br>Region | The <i>Active Video Region</i> is that portion of a transmitted video signal which contains the active video information that is displayed on a monitor's screen. This information is usually generated by a video source (host). In some cases, the displayed video may be generated in the monitor (closed captioning, on screen displays, etc.).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| C-2    | ASCII                  | Acronym for the <i>American Standard Code for Information Interchange</i> .<br>Pronounced <i>ask-ee</i> , ASCII is a code for representing English characters as<br>numbers, with each letter assigned a number from 0 to 127. For example, the<br>ASCII code for uppercase <i>M</i> is 77. Most computers use ASCII codes to<br>represent text, which makes it possible to transfer data from one computer to<br>another.<br>Text files stored in ASCII format are sometimes called ASCII files. Text editors<br>and word processors are usually capable of storing data in ASCII format,<br>although ASCII format is not always the default storage format. Most data files,<br>particularly if they contain numeric data, are not stored in ASCII format.<br>Executable programs are never stored in ASCII format.<br>The standard ASCII character set uses just 7 bits for each character. There are<br>several larger character sets that use 8 bits, which gives them 128 additional<br>characters. The extra characters are used to represent non-English characters,<br>graphics symbols, and mathematical symbols. Several companies and<br>organizations have proposed extensions for these 128 characters. The DOS<br>operating system uses a superset of ASCII called <i>extended ASCII</i> or <i>high ASCII</i> .<br>A more universal standard is the ISO Latin 1 set of characters, which is used by<br>many operating systems, as well as Web browsers. |
| C-3    | BCD                    | Acronym for <i>binary-coded decimal</i> , a format for representing decimal numbers (integers) in which each digit is represented by four bits (a <i>nibble</i> ). For example, the number 375 would be represented as:<br>0011 0111 0101<br>One advantage of BCD over binary representations is that there is no limit to the size of a number. To add another digit, you just need to add a new 4-bit sequence. In contrast, numbers represented in binary format are generally limited to the largest number that can be represented by 8, 16, 32 or 64 bits.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| C-4    | BIOS                   | ( $b\bar{i}$ $c\bar{o}s$ ) Acronym for <i>basic input/output system</i> , the built-in software that<br>determines what a computer can do without accessing programs from a disk. On<br>PCs, the BIOS contains all the code required to control the keyboard, display<br>screen, disk drives, serial communications, and a number of miscellaneous<br>functions.<br>The BIOS is typically placed in a ROM chip that comes with the computer (it is<br>often called a <i>ROM BIOS</i> ). This ensures that the BIOS will always be available<br>and will not be damaged by disk failures. It also makes it possible for a<br>computer to boot itself. Because RAM is faster than ROM, though, many<br>computer manufacturers design systems so that the BIOS is copied from ROM<br>to RAM each time the computer is booted. This is known as <i>shadowing</i> .<br>Many modern PCs have a <i>flash BIOS</i> , which means that the BIOS has been<br>recorded on a flash memory chip, which can be updated if necessary.                                                                                                                                                                                                                                                                                                                                                                                                                                                 |

| Ref. # | Term     | Definition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|--------|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| C-5    | CEA      | Acronym for <i>Consumer Electronics Association</i> . CEA has developed standards and specifications for the Consumer Electronics Industry. More information is available at www.ce.org.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| C-6    | CIE      | Acronym for <i>Commission Internationale de l'Eclairage</i> . CIE is a technical, scientific and cultural, non-profit autonomous organization devoted to international cooperation and exchange of information among its member countries on all matters relating to the science and art of lighting. Founded in the early 1900s, CIE has developed several Chromaticity Diagrams (1931 - 2°, 1976 – UCS, etc.). More information is available at <u>www.cie.co.at</u> .                                                                                                                                                                                                                                                                 |
| C-7    | CVT      | Shorthand method of referring to VESA's <i>Coordinated Video Timing</i> Standard.<br>CVT is a method for generating a consistent and coordinated set of standard<br>formats, display refresh rates, and timing specifications for computer display<br>products. More information is available at <u>www.vesa.org</u> .                                                                                                                                                                                                                                                                                                                                                                                                                   |
| C-8    | DCM      | Shorthand method of referring to VESA's <i>Display Color Management</i> Standard.<br>The DCM Standard defines the overall requirements, data collection, data<br>conversion and data storage for monitor-specific data needed to perform display<br>color management as part of a color managed computer system. More<br>information is available at www.vesa.org.                                                                                                                                                                                                                                                                                                                                                                       |
| C-9    | DDC      | Acronym for <i>Display Data Channel</i> , a VESA standard for a serial<br>communications link (based on I <sup>2</sup> C protocols) between a monitor and a video<br>adapter. Using DDC, a monitor can inform the video card about its properties,<br>such as maximum resolution, color depth and supported video timing modes.<br>The video card can then use this information to ensure that the user is presented<br>with valid options for configuring the display. The VESA DDC standard is<br>obsolete and has been superseded by the VESA E-DDC Standard.<br>DDC can also refer to an addressing method which allows the host (source) to<br>read up to 256 bytes of EDID data. More information is available at<br>www.vesa.org. |
| C-10   | DI-EXT   | Shorthand method of referring to VESA's <i>Display Information Extension</i> Block<br>Standard. DI-EXT is an extension block to the base (block 0) EDID. DI-EXT<br>contains additional information related to the digital interface and display<br>feature set that is not available in the base (block 0) EDID. More information is<br>available at <u>www.vesa.org</u> .                                                                                                                                                                                                                                                                                                                                                               |
| C-11   | DMT      | Shorthand method of referring to the "VESA and Industry Standards and<br>Guidelines for Computer <i>Display Monitor Timing</i> (DMT) Standard". The DMT<br>standard lists the timing parameters for VESA and industry video timing<br>formats. More information is available at <u>www.vesa.org</u> .                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| C-12   | DPVL-EXT | Shorthand method of referring to VESA's <i>Digital Packet Video Link Extension</i><br>Block. DPVL-EXT is defined in the VESA Digital Packet Video Link (DPVL)<br>Standard. The DPVL Standard defines video packet structures, a capability<br>management scheme and a monitor control scheme. DPVL-EXT is an extension<br>block to the base (block 0) EDID. More information is available at<br>www.vesa.org.                                                                                                                                                                                                                                                                                                                            |
| C-13   | DTV      | Acronym for <b>D</b> igital <b>T</b> elevision.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| C-14   | DVI      | Acronym for <i>Digital Visual Interface</i> . DVI is a digital video interface (using TMDS protocols) specification that was defined by the Digital Display Working Group (DDWG). More information is available at <u>www.ddwg.org</u> .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |

| Ref. # | Term       | Definition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|--------|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| C-15   | E-DDC      | Acronym for <i>Enhanced-Display Data Channel</i> , a VESA standard for a serial communications link (based on I <sup>2</sup> C protocols) between a monitor and a video adapter. Using E-DDC, a monitor can inform the video card about its properties, such as maximum resolution, color depth and supported video timing modes. The video card can then use this information to ensure that the user is presented with valid options for configuring the display.<br>E-DDC can also refer to an addressing method which allows the host (source) to read up to 32 Kbytes of EDID data. More information is available at www.vesa.org.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| C-16   | EDID       | Acronym for <i>Extended Display Identification Data</i> . EDID can refer to a VESA standard data format that contains basic information about a monitor and its capabilities, including vendor information, maximum image size, color characteristics, factory pre-set timings, frequency range limits, and character strings for the monitor name and serial number.<br>The information is stored in the display and is used to communicate with the system through a Display Data Channel (DDC), which sits between the monitor and the PC graphics adapter. The system uses this information for configuration purposes, so the monitor and system can work together.<br>The term 'EDID' may refer to configuration data that is stored in a display and can be read/decoded by a host. EDID may refer to base EDID (Block 0) or a base EDID (Block 0) plus one or more extension blocks. The term EDID may also refer to a process for storing and reading the data. The VESA EDID standard is obsolete and has been superseded by the VESA E-EDID Standard. More information is available at <u>www.vesa.org</u> . |
| C-17   | E-EDID     | Acronym for <i>Enhanced Extended Display Identification Data</i> . The term E-EDID may refer to a process for storing and reading the data. In addition, the term E-EDID is shorthand for the VESA Enhanced Extended Display Identification Data Standard. More information is available at <u>www.vesa.org</u> .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| C-18   | EIA        | Abbreviation for <i>Electronic Industries Alliance. EIA</i> is a trade association representing the U.S. high technology community. It began in 1924 as the Radio Manufacturers Association. The EIA sponsors a number of activities on behalf of its members, including conferences and trade shows. In addition, it has been responsible for developing some important standards, such as the RS-232, RS-422 and RS-423 standards for connecting serial devices.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| C-19   | EISA ID    | <ul> <li>Acronym for <i>Extended Industry Standard Architecture Identification Data</i>. The EISA ID code is used to represent an ID manufacturer name. It is a 2-byte representation of the monitor's manufacturer 3 letter code using compressed ASCII, "00001=A" "11010=Z".</li> <li>EISA manufacturer IDs are issued by Microsoft. Contact by email or fax: E-mail: pnpid@microsoft.com Fax: 425-936-7329, Attention PNPID in Building 27. URL: Refer to www.microsoft.com/whdc/hwdev/pnpid.mspx for more information on EISA ID.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| C-20   | FPD        | Acronym for <i>Flat Panel Display</i> .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| C-21   | Frame Lock | As applied to electronic displays, Frame Lock is achieved when there is a constant time relationship between elements of the image at the display's input (the external interface) and the visible appearance of the corresponding elements in the displayed image.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |

| Ref. # | Term      | Definition                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
|--------|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| C-22   | Gamma     | The term <i>Gamma</i> is used to signify the exponent of a power function describing the transfer characteristics of a <i>Display</i> when such a curve is an accurate (or adequate) description. Commonly used as a short-hand term meaning the <i>Display</i>                                                                                                                                                                     |  |
| C-23   | GTF       | Transfer Characteristic of any Display.         Shorthand method of referring to VESA's Generalized Timing Formula         Standard. GTF is a standard method of creating video timing modes. More         information is available at www.vesa.org .                                                                                                                                                                               |  |
| C-24   | НА        | HA refers to <i>Horizontal Active</i> pixels. HA is part of a complete video timing format definition. HA defines the number of active pixels on a horizontal line that can be displayed on a monitor screen. For more information, refer to section 3.12.                                                                                                                                                                          |  |
| C-25   | НВ        | HB refers to <i>Horizontal Border</i> . HB is part of a complete video timing format definition. HB defines the number of pixels on a horizontal line that is located between the HA and HBL regions. HB can be in two locations before and after HA. Portions of the HB may be displayed on a monitor screen. For more information, refer to section 3.12.                                                                         |  |
| C-26   | HBL       | HBL refers to <i>Horizontal Blanking</i> . HBL is part of a complete video timing format definition. HBL defines the number of pixels on a horizontal line where HA and HB are not present. Portions of the HBL may be displayed on a monitor screen. For more information, refer to section 3.12.                                                                                                                                  |  |
| C-27   | HDMI      | Shorthand method of referring to the <i>High-Definition Multimedia Interface</i><br>Specification. HDMI is a digital video and audio interface (using TMDS<br>protocols) specification that is commonly being used in consumer electronic<br>devices (sources and displays). Refer to <u>www.hdmi.org</u> for more information on<br>HDMI.                                                                                          |  |
| C-28   | HSO       | HSO refers to <i>Horizontal Sync Offset</i> . HSO is part of a complete video timing format definition. HSO defines the number of pixels on a horizontal line which are located between the end (trailing edge) of HA and the beginning (leading edge) of the horizontal sync pulse. HSO includes the HB and the horizontal front porch regions. For more information, refer to section 3.12.                                       |  |
| C-29   | HSPW      | HSPW refers to <i>Horizontal Sync Pulse Width</i> . HSPW is part of a complete video timing format definition. HSPW defines the number of pixels on a horizontal line which are located between the leading and trailing edges of the horizontal sync pulse. For more information, refer to section 3.12.                                                                                                                           |  |
| C-30   | IEC       | Acronym for <i>International Electrotechnical Commission</i> . IEC is the authoritative worldwide body responsible for developing consensus global standards in the electrotechnical field. Refer to <u>http://www.iec.ch/index.html</u> for more information on IEC.                                                                                                                                                               |  |
| C-31   | ISO       | Acronym for <i>International Organization for Standardization</i> . ISO is the world's largest developer of standards (both technical and non-technical). Refer to http://www.iso.org/iso/en/ISOOnline.frontpage for more information on ISO.                                                                                                                                                                                       |  |
| C-32   | Letterbox | A coded frame having horizontal bars, usually black, present at the top and bottom.                                                                                                                                                                                                                                                                                                                                                 |  |
| C-33   | LSB       | Acronym for <i>Least Significant Byte</i> . It means if 2 or more bytes of data are stored in a system, the data is stored least significant byte first. For example, a certain Product ID may be '7203(hex)'. In the base EDID (block 0), the 2 byte Product ID code is stored as '03h' at address <b>0Ah</b> and '72h' at address <b>0Bh</b> or least significant byte is listed first. The most significant byte is listed last. |  |
| C-34   | LS-EXT    | Shorthand method of referring to VESA's <i>Localized String Extension</i> Block. LS-EXT is defined in the VESA Enhanced EDID Localized String Extension (LS-EXT) Standard. LS-EXT is an extension block to the base (block 0) EDID. More information is available at <u>www.vesa.org</u> .                                                                                                                                          |  |

| Ref. # | Term                | Definition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|--------|---------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| C-35   | Native Pixel Format | Native Pixel Format is defined as the number of physical pixels along the horizontal axis by the number of physical pixels along the vertical axis of the display device. Note that some display technology implementations do not have an array of "physical pixels" but instead can be considered to have an array of virtual or logical pixels. In these cases, the Native Pixel Format is defined as the number of virtual or logical pixels along the vertical axis of the display device that the display manufacturer has determined provides an optimum image.                                                                                                                                                                                                                                                                          |
| C-36   | Off                 | Off is one of 4 monitor power states defined in the VESA Display Power<br>Management Signaling (DPMS) Standard. Off is also one of 2 monitor power<br>states defined in the VESA Display Power Management (DPM) Standard. The<br>Off state provides for the maximum amount of power savings. The amount of<br>power savings (in watts) in the Off state is monitor design dependant. The<br>amount of recovery time is also system design dependant. In some monitor<br>designs, recovery from the Off state may require user intervention. Note that the<br>VESA DPM Standard has superseded (replaced) the VESA DPMS Standard.<br>More information is available at www.vesa.org.                                                                                                                                                              |
| C-37   | On                  | On is one of 4 monitor power states defined in the VESA Display Power<br>Management Signaling (DPMS) Standard. On is also one of 2 monitor power<br>states defined in the VESA Display Power Management (DPM) Standard. On<br>refers to the state of the display when it is in full operation. The On state<br>provides for no power savings. Note that the VESA DPM Standard has<br>superseded (replaced) the VESA DPMS Standard. More information is available<br>at www.vesa.org.                                                                                                                                                                                                                                                                                                                                                            |
| C-38   | Pillarbox           | A coded frame having vertical bars, usually black, present at the left and right edge.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| C-39   | РТВ                 | Shorthand method of referring to VESA's <i>Preferred Timing Bit</i> . EDID data<br>structure version 1, revision 3 requires the EDID Preferred Timing Bit (PTB) to<br>be set to one. EDID data structure version 1, revision 4 changed the PTB<br>definition to the following: 'Preferred Timing Mode includes (if PTB = '1') or<br>does not include (if PTB = '0') the native pixel format and preferred refresh rate<br>of the display device.' The PTB is located at bit 1 of the "Feature Support Byte"<br>(at address <b>18h</b> ). Refer to section 3.6.4.                                                                                                                                                                                                                                                                                |
| C-40   | РТМ                 | Shorthand method of referring to VESA's <i>Preferred Timing Mode</i> . EDID data structures version 1, revision 3 and version 1, revision 4 requires the preferred timing mode be stored in the first 18 Byte Data Block. The display manufacturer defines the "Preferred Timing Mode (PTM)" as the video timing mode that will produce the best quality image on the display's viewing screen. For most flat panel displays (FPD), the preferred timing mode will be the panel's "native timing" and "native resolution".                                                                                                                                                                                                                                                                                                                      |
| C-41   | Standby             | Standby is one of 4 monitor power states defined in the VESA Display Power<br>Management Signaling (DPMS) Standard. Standby (now Off) is also one of 2<br>monitor power states defined in the VESA Display Power Management (DPM)<br>Standard. The Standby state provides for a minimal amount of power savings<br>somewhere between zero power savings in the On state and substantial power<br>savings in the Suspend State. The amount of power savings (in watts) in the<br>Standby state is monitor design dependant. The amount of recovery time is<br>defined as short also system design dependant. In the VESA DPM Standard,<br>the Standby state has been translated to the Off state. Note that the VESA DPM<br>Standard has superseded (replaced) the VESA DPMS Standard. More<br>information is available at <u>www.vesa.org</u> . |

| Ref. # | Term    | Definition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|--------|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| C-42   | Suspend | Suspend is one of 4 monitor power states defined in the VESA Display Power<br>Management Signaling (DPMS) Standard. Suspend (now Off) is also one of 2<br>monitor power states defined in the VESA Display Power Management (DPM)<br>Standard. The Suspend state provides for a substantial amount of power savings<br>somewhere between minimal power savings in the Standby state and<br>maximum power savings in the Off State. The amount of power savings (in<br>watts) in the Suspend state is monitor design dependant. The amount of recovery<br>time is defined as longer than the Standby recovery time also system design<br>dependant. In the VESA DPM Standard, the Suspend state has been translated to<br>the Off state. Note that the VESA DPM Standard has superseded (replaced) the<br>VESA DPMS Standard. More information is available at <u>www.vesa.org</u> . |
| C-43   | VA      | VA refers to <i>Vertical Active</i> lines. VA is part of a complete video timing format definition. VA defines the number of horizontal lines in a vertical field that can be displayed on a monitor screen. For more information, refer to section 3.12.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| C-44   | VB      | VB refers to <i>Vertical Border</i> . VB is part of a complete video timing format definition. VB defines the number of horizontal lines in a vertical field that is located between the VA and VBL regions. VB can be in two locations before and after VA. Portions of the VB may be displayed on a monitor screen. For more information, refer to section 3.12.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| C-45   | VBE     | Shorthand method of referring to VESA <b>B</b> IOS <b>E</b> xtension Standards. VBE refers<br>to a group of VESA Standards: VBE/Accelerator Functions; VBE/Audio<br>Interface; VBE/Core Functions; VBE/Display Data Channel; VBE Power<br>Management & VBE/Serial Control Interface. More information is available at<br>www.vesa.org.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| C-46   | VBL     | VBL refers to <i>Vertical Blanking</i> . VBL is part of a complete video timing format definition. VBL defines the number of lines on a vertical field where VA and VB are not present. Portions of the VBL may be displayed on a monitor screen. For more information, refer to section 3.12.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| C-47   | VIAD    | Shorthand method of referring to VESA's <i>Video Image Area Definition</i><br>Standard. VIAD is a standard method of defining the usable image area for CRT displays. More information is available at <u>www.vesa.org</u> .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| C-48   | VSO     | VSO refers to <i>Vertical Sync Offset</i> . VSO is part of a complete video timing format definition. VSO defines the number of horizontal lines in a vertical field which are located between the end (trailing edge) of VA and the beginning (leading edge) of the vertical sync pulse. VSO includes the VB and the vertical front porch regions. For more information, refer to section 3.12.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| C-49   | VSPW    | VSPW refers to <i>Vertical Sync Pulse Width</i> . VSPW is part of a complete video timing format definition. VSPW defines the number of horizontal lines in a vertical field which are located between the leading and trailing edges of the vertical sync pulse. For more information, refer to section 3.12.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| C-50   | VTB-EXT | Shorthand method of referring to VESA's <i>Video Timing Block Extension</i> Data Standard. VTB-EXT is an extension block to the base (block 0) EDID. VTB-EXT allows for the storage of additional video timing information that may not fit in the base (block 0) EDID. More information is available at <u>www.vesa.org</u> .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |

# 9. APPENDIX D - Answers To Commonly Asked Questions

| Ref. # | Question                                                                                                                                                                                                                                                 | Answer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| D-1    | What is relationship between EDID Data<br>Structures Version 1 Revision 0, Version<br>1 Revision 1, Version 2 Revision 0,<br>Version 1 Revision 2, Version 1<br>Revision 3 and Version 1 Revision 4<br>defined in the DDC, EDID and E-EDID<br>Standards? | <ul> <li>Below is the history of EDID Data Structure Definitions:</li> <li>1. EDID data structure 1.0 was the original 128-byte data format introduced in the DDC Standard Version 1.0 Revision 0 (August 12, 1994).</li> <li>2. EDID data structure 1.1 was introduced in the EDID Standard Version 2 Revision 0 (April 1996). Structure 1.1 added definitions for monitor descriptors as an alternate use of the space originally reserved for detailed timings, as well as definitions for previously unused fields.</li> <li>3. EDID data structure 1.2 was introduced in EDID Standard Version 3 (November 13, 1997). Structure 1.2 added definitions to existing data fields. EDID data structure 2.0 (a 256 byte definition) was also defined in the Version 3 standard.</li> <li>4. EDID data structure 1.3 was defined in the E-EDID Standard Release A (September 2, 1999). The 1.3 data structure added definitions for secondary GTF curve coefficients. EDID 1.3 was based on the same core as all other EDID 1. x structures. Structure 1.3 is a superset of structure 1.2. The main difference between the two is that 1.3 allows the Monitor Range Limits descriptor to define coefficients for a secondary GTF curve, and mandates a certain set of monitor descriptors.</li> <li>5. The current E-EDID Standard Release A Revision 1 (Date is TBD) defines the EDID data structure 1.4. The new data structure 1.4 includes support for CVT and some new monitor timing and data descriptors.</li> <li>Each new EDID data structure adds enhancements to the EDID definition and it supersedes the older generation data structure. It should be noted that the EDID data structure 2.0 defined in the EDID defined in the EDID data structure is version 1.3. However, new designs, especially those intended for the standard PC and CE markets, are strongly urged to use only the new data structure 1.4 defined in this document (E-EDID, Release A, Revision 1).</li> </ul> |
| D-2    | What should 'ID Manufacturer Name'<br>field contain?                                                                                                                                                                                                     | Ref.: Section 3.4.1 (E-EDID Standard Release A, Revision 2)<br>This field should contain the registered ISA (Industry Standard<br>Architecture) -ID (Identification Data) code for the manufacturer'<br>name. Note that ISA was formally known as EISA. ISA codes are<br>now issued by Microsoft as part of their plug and play activity.<br>Contact via e-mail: <u>PnPID@Microsoft.com</u> .<br>Contact via fax: 425-936-7329, Attention PNPID in Building 27.<br>URL: Refer to<br><u>http://www.microsoft.com/whdc/system/pnppwr/pnp/pnpid.mspx</u> .<br>for more information on ISA ID.<br><b>Note:</b> Previous versions of this standard made reference to BCPR<br>as provider of this information. This is no longer correct.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| D-3    | What should the 'ID Product Code' field contain?                                                                                                                                                                                                         | However, existing ISA ID codes issued by BCPR remain valid.<br>Ref.: Section 3.4.2 (E-EDID Standard Release A, Revision 2)<br>A display manufacturer assigned identifier (2 bytes LSB) for<br>the product type, e.g. the model number. Note that some host SW<br>expects the combination of the 'manufacturer code' + the 'ID<br>product code' to give a unique identifier.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |

| Ref. # | Question                                                                                                                                                                                                                                                                                                            | Answer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| D-4    | Table 3.22 Decode for Stereo Modes<br>If bits 5 & $6 = 0$ what should bit 0 equal?                                                                                                                                                                                                                                  | Ref.: Table 3.22 (E-EDID Standard Release A, Revision 2)<br>Bit 0 is defined as a "don't care" (i.e., it should be ignored) in this<br>case. When both bits 5 & 6 are set to zero, the display is<br>indicating that it has no support for stereo operation.                                                                                                                                                                                                                               |
| D-5    | In section 3.10.2 Detailed Timing<br>Description:<br>Is the following true?<br>Horizontal sync offset = Horizontal front<br>porch, if Horizontal border = 0.                                                                                                                                                        | Ref.: Section 3.10.2 (E-EDID Standard Release A, Revision 1)<br>Yes                                                                                                                                                                                                                                                                                                                                                                                                                        |
| D-6    | Does 'Horizontal Addressable Video in<br>pixels' = the total number of pixels on a<br>horizontal line?                                                                                                                                                                                                              | Ref.: Sections 3.10.2 (E-EDID Standard Release A, Revision 2)<br>No; one complete horizontal line consists of both the Horizontal<br>Addressable Video, Horizontal Border and Horizontal Blanking<br>periods. Therefore, the total number of pixels in one full<br>horizontal line time is obtained by summing these values (as<br>provided by the third through fifth bytes of a Detailed Timing<br>Description; see Table 3.21)                                                          |
| D-7    | Is 'Image aspect ratio' = (Horizontal<br>addressable pixel) ÷ (Vertical<br>addressable pixel)?                                                                                                                                                                                                                      | Ref.: Section 3.9 (E-EDID Standard Release A, Revision 2)<br>Yes, assuming that the pixels are "square." All VESA timing<br>standards assume "square" pixels; this may not be the case for<br>timings from other sources, and so the Standard Timing codes<br>should be used only for timings which conform to the VESA<br>CVT, DMT, GTF, etc., standards.                                                                                                                                 |
| D-8    | If calculated aspect ratio is not 16 : 10<br>AR, 4 : 3 AR, 5 : 4 AR or 16 : 9 AR<br>what timing description should be used?                                                                                                                                                                                         | Ref.: Section 3.9 (E-EDID Standard Release A, Revision 2)<br>The Standard Timings Identification code may not be used to<br>identify timings which do not match one of these standard aspect<br>ratios. Support for such timings must be indicated elsewhere, e.g.,<br>by use of a Detailed Timing Descriptor.                                                                                                                                                                             |
| D-9    | How should VESA standard timings not<br>listed in the 'established timings' section<br>be handled?                                                                                                                                                                                                                  | Ref.: Section 3.9 (E-EDID Standard Release A, Revision 2)<br>The 'standard timing identification' fields (2 bytes each) provide<br>for a coded way to identify timings not included in the 'established<br>timings' section. It is also possible to fully describe a required<br>timing in a 'detailed timing descriptor'.                                                                                                                                                                 |
| D-10   | If I want to use the 'standard timing<br>identification' fields, where do I get the<br>'Horizontal addressable pixel' and<br>'image aspect ratio' for a particular<br>timing?                                                                                                                                       | Ref.: Section 3.9 (E-EDID Standard Release A, Revision 2)<br>VESA timing standards (VESA and Industry Standards and<br>Guidelines for Computer Display Monitor Timing (DMT),<br>Version 1.0, Revision 10; October 29, 2004) include these<br>parameters.                                                                                                                                                                                                                                   |
| D-11   | If I want to use a 'detailed timing<br>descriptor' block, where do I get the<br>detailed information?                                                                                                                                                                                                               | Ref.: Section 3.10.2 (E-EDID Standard Release A, Revision 2)<br>If it is a standard VESA timing, then all details are part of the<br>VESA and Industry Standards and Guidelines for Computer<br>Display Monitor Timing (DMT), Version 1.0, Revision 10,<br>October 29, 2004. If it is a proprietary timing, then details need to<br>be established by the developer.                                                                                                                       |
| D-12   | Section 3.8 Established Timing Section<br>says "a list of one-bit flags, which may<br>be used to indicate support for<br>established VESA and other common<br>timings in a very compact form"<br>Does 'support' mean that the mode is<br>pre-set in the monitor or that monitor is<br>capable of handling the mode? | Ref.: Section 3.8 (E-EDID Standard Release A, Revision 2)<br>It is the intention of the VESA specification that all modes<br>selected here are monitor supported modes and should not need<br>image size and center adjustments by the end user. Different<br>manufacturers have applied different interpretations, it appears<br>that some define 'support' to mean that the monitor is capable of<br>handling the mode but may require user adjustment of image size,<br>centering, etc. |

| Ref. # | Question                                                                                                                                                                                                                                          | Answer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |  |
|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| D-13   | In Table 3.30 – Additional Color Point<br>Descriptor Definition - A Value of '00h'<br>at Byte 10 indicates 'No color point data<br>follows'<br>Does this mean that only white gamma<br>follows or neither white chromaticity nor<br>gamma follow? | In Table 3.30 (E-EDID Standard Release A, Revision 2), an index value = 00h means that neither white point chromaticity nor white gamma values follow.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |  |
| D-14   | In Table 3.30:<br>What binary index value should the<br>white point index start from? Is it<br>arbitrary?                                                                                                                                         | Ref.: Table 3.30 (E-EDID Standard Release A, Revision 2)<br>It is arbitrary and left to individual manufacturers.<br>However, there is white color and gamma data stored in bytes 24 -<br>27 (decimal) with no explicit index number. Implementers may<br>wish to assume that this is an implicit index number of 1 and<br>hence the explicit index numbers in a descriptor block should start<br>at 2.                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |  |  |
| D-15   | In section 3.10.3.5:<br>How many color point monitor<br>descriptors are allowed? One or up to<br>four?                                                                                                                                            | Ref.: Section 3.10.3.5 (E-EDID Standard Release A, Revision 2)<br>For EDID data structure version 1.4, up to six color points may be<br>defined in 3 monitor descriptor blocks. This assumes that the<br>monitor range limits and monitor name are not used.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |  |
| D-16   | What is the most reliable way for a graphics sub-system to determine the operating range of the attached monitor?                                                                                                                                 | Ref.: Section 3.10.3.3 (E-EDID Standard Release A, Revision 2)<br>For EDID data structure version 1.4, it is recommended that the<br>Display Range Limit Descriptor (if provided) be used. Monitor<br>operating range limits cannot be reliably inferred from any other<br>source within the EDID.                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |  |
| D-17   | Which EDID data structure should I use with a DVI implementation?                                                                                                                                                                                 | The DVI specification (version 1.0) permits the use of EDID data<br>structures 1.2 and 2.0 for interim designs but indicates that they<br>want to move to EDID data structure 1.3. However, VESA<br>recommends that you use EDID data structure version 1.4 which is<br>defined in this document.                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |  |
| D-18   | Are there any dependencies on EDID for implementation of DVI hot-plugging?                                                                                                                                                                        | No, the hot-plugging scheme described in the DVI specification is independent of the EDID content.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |  |
| D-19   | In EDID, how do you count the week<br>value? Do you start counting on the first<br>Monday or the first Sunday of the new<br>year?                                                                                                                 | Ref.: Section 3.4.4 (E-EDID Standard Release A, Revision 2)<br>How one defines the week of manufacture is up to the individual<br>display manufacturer. However, one way is to count January 1-7<br>as week 1, January 8-15 as week 2 and so on. This will give<br>consistent results, regardless of the year, and will always yield a<br>value of 54 or less. You can also count based on the week number<br>(Sunday-Saturday).                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |  |  |
| D-20   | Has a common address been set for the EDID memory in the DFP, P&D and DVI standards? In the past A0h was the only address, until P&D introduced A2h.                                                                                              | The Enhanced EDID and Enhanced DDC standards refer only to<br>A0h and 60h. This is the address used by DFP, DVI and HDMI.<br>Since P&D was not widely adopted, it is anticipated that support<br>for P&D will fade and the use of A2h will diminish.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |  |  |
| D-21   | For monitors using DVI connectors, how<br>do you set the Video Input Definition<br>byte? Doesn't the digital port share the<br>same EDID with the analog one on a<br>DVI-1 connector?                                                             | Ref: Section 3.6.1 (E-EDID Standard Release A, Revision 2)<br>The DVI-I connector includes one analog input and one digital<br>input. Only one port (analog or digital) can be active. You must<br>have 2 EDID tables (one analog and one digital) stored in the<br>monitor. If the analog input is active, then the DDC channel<br>transmits the analog EDID table and bit 7 of the byte at address<br><b>14h</b> (Video Input Definition) is set to zero. If the digital input is<br>active, then the DDC channel transmits the digital EDID table and<br>bit 7 of the byte at address <b>14h</b> (Video Input Definition) is set to<br>one. An alternative to using DVI-I is to use VESA's M-1<br>connector or 2 separate (one VGA and one DVI-D) connectors. |  |  |  |  |  |  |

| Ref. # | Question                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Answer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| D-22   | I have a question regarding the 18 Byte<br>Descriptors (Detailed Timing) Section of<br>the E-EDID Standard (sec. 3.10, pg. 30).<br>Our display supports one resolution —<br>1024x768@60Hz. Are we required to<br>fill in the remaining three descriptor<br>blocks with valid data? I see we are<br>required to give a display range limits<br>descriptor and a display product name<br>descriptor, as well as another descriptor.<br>Is it OK to fill these with 'junk' or<br>random data? | Ref: Section 3.10 (E-EDID Standard Release A, Revision 2)<br>All four 18 Byte Descriptors must contain data. 'Junk' or 'random<br>data' cannot be used. The first 18 Byte Descriptors must contain<br>the Preferred Timing Mode in this case, 1024x768@60Hz. For<br>EDID data structure version 1, revision 3, the use of the Display<br>Range Limit Descriptor and the Display Product Name Descriptor<br>are required. For EDID data structure version 1, revision 4, the use<br>of the Display Range Limit Descriptor and the Display Product<br>Name Descriptor are optional (but recommended). If the Display<br>Range Limit Descriptor is used for a single mode (frequency)<br>monitor, define the horizontal and vertical pull in ranges. Any<br>unused 18 Byte Descriptors must be filled with the Dummy<br>Descriptor data tag '10h'. Refer to section 3.10.3.11.                         |
| D-23   | To implement the E-EDID EEPROM<br>Standard, does one also need the E-<br>EDID Standard?                                                                                                                                                                                                                                                                                                                                                                                                    | The E-EDID Standard is not necessary, but would be helpful.<br>However, E-DDC is necessary because the EEPROM will need to<br>implement the block pointer (offset pointer at address '60h')<br>described in the E-DDC Standard.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| D-24   | In the E-EDID Standard (Rel. A, Rev. 2)<br>in section 3.4.4, table 3.8 it states "A<br>value of '00h' indicates that the Week of<br>Manufacture is not specified". Is it also<br>okay to set the value '00h' if the 'year'<br>of manufacture field is not used? Do<br>you have to use the year that you<br>manufactured? It is a bit of trouble to<br>change the manufacture year for the<br>same product every year. Can you use<br>the year of development instead?                      | Ref: Section 3.4.4 (E-EDID Standard Release A, Revision 2)<br>The week of manufacture field is optional and if not used, enter a<br>value of '00h' at address <b>10h</b> . The year of manufacture field is<br>required and shall be set according to the definition in the E-EDID<br>Standard. Monitors manufactured in 2005, for example, would use<br>the value '0Fh'.<br>You have the option to declare the Model Year you can do this<br>by entering 'FFh' at address <b>10h</b> (Week of Manufacture). The data<br>stored at address <b>11h</b> now contains the Model Year.                                                                                                                                                                                                                                                                                                                  |
| D-25   | In E-EDID (Release A, Revision 2)<br>Table 3.19 states that there is a formula<br>for horizontal active pixel and aspect<br>ratio. Is this VESA DMT, GTF or CVT?                                                                                                                                                                                                                                                                                                                           | Ref: Section 3.9 (E-EDID Standard Release A, Revision 2)<br>The formula in Table 3.19 just describes the method to encode the<br>data for the standard timing block in EDID. This block has<br>primarily been used to indicate support for standard timings in<br>DMT. The 2-byte codes for this encoding are actually shown in<br>the DMT Standard. If a video timing mode is not listed in DMT,<br>then use the GTF/CVT formulas to generate the timing<br>parameters. An example would be 1024x768@80Hz, which would<br>be encoded with the 2-byte code of '61h' & '54h'. Since there is<br>no VESA standard for this format and refresh rate combination,<br>this 2-byte code would indicate that the monitor supports a GTF or<br>CVT-based timing for this mode. Note: EDID data structure<br>version 1.3 supports GTF. For EDID data structure version 1.4,<br>GTF has been replaced by CVT. |
| D-26   | How do I handle backward compatibility<br>between a host (source) that can decode<br>EDID data structure version 1.3 when<br>connected to a display (sink) that<br>contains EDID data structure version<br>1.4?                                                                                                                                                                                                                                                                            | Refer to VESA's "Plug & Play" Standard.<br>A source that can only decode EDID data structure version 1.3<br>should ignore any EDID 1.4 data fields that it does not understand.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| D-27   | Is it possible to distinguish the display<br>technology (CRT, LCD, PDP, etc.) being<br>used on a video interface if the DI-EXT<br>extension is not present in the monitor?                                                                                                                                                                                                                                                                                                                 | Ref: Section 3.10.1 (E-EDID Standard Release A, Revision 2)<br>There is no way to determine the display technology being used<br>from the base EDID (block 0). However, you can look at the<br>preferred timing in the first 18-Byte Data Block (the detailed<br>timing definition) in the base EDID. Most LCDs use a 60Hz rate,<br>while most CRTs use 75Hz or 85Hz. While this is not an absolute<br>method, it does provide some clues.                                                                                                                                                                                                                                                                                                                                                                                                                                                          |

| Ref. # | Question                                                                                                  | Answer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |  |
|--------|-----------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| D-28   | What are Established Timings and why<br>are they different than Standard Timings<br>and Detailed Timings? | Ref: Section 3.8 (E-EDID Standard Release A, Revision 2)<br>Established Timings contain a list of industry and VESA standard<br>timings commonly used in the PC industry. Established Timings<br>include Established Timing I & II and Manufacturer's Timings.<br>Refer to Table 3.18. All video timing modes listed in the<br>Established Timings are defined in the VESA DMT Standard.<br>Note that EDID Data Structure version 1.4 defines an optional<br>Established Timing III as a monitor descriptor. Refer to section<br>3.10.3.9. Established Timings III lists those display monitor<br>timings (DMTs) that are listed in the VESA and Industry<br>Standards and Guidelines for Computer Display Monitor Timing<br>(DMT) Standard but are not included in Established Timings I or<br>II or Manufacturer's Timings. Because Established Timings are<br>well-known and documented, they can be represented by a single<br>bit set in EDID. Note that Established Timings do not indicate any<br>order of priority for the video timing modes that are listed.                                                                                                                                                                                                          |  |  |  |  |  |
| D-29   | What are Standard Timings and why are<br>they different than Established Timings<br>and Detailed Timings? | Ref: Section 3.9 (E-EDID Standard Release A, Revision 2)<br>Standard Timings are used to represent VESA standard timings<br>that are listed in the VESA and Industry Standards and Guidelines<br>for Computer Display Monitor Timing (DMT) but are not<br>included in Established Timings I or II or Manufacturer's<br>Timings. A 2-byte formula is used to give minimal information<br>about the format and refresh rate so they can be referenced to a<br>known timing. The 2-byte codes for DMT defined timings are<br>listed in the VESA and Industry Standards and Guidelines for<br>Computer Display Monitor Timing (DMT). For video timing<br>modes that are not listed in the VESA and Industry Standards and<br>Guidelines for Computer Display Monitor Timing (DMT)<br>document, use GTF to generate the 2-byte Standard Timing codes.<br>This allows displays to indicate support for new timing standards<br>without the need to revise the EDID or the DMT Standards when<br>those timings are created. Note that it is not good practice to list<br>(repeat) an Established Timing in the Standard Timings section.<br>This is a redundant listing. Note that the order of listing Standard<br>Timings indicates the order of priority for the video timing modes |  |  |  |  |  |
| D-30   | What are Detailed Timings and why are<br>they different than Established Timings<br>and Standard Timings? | that are listed.<br>Ref: Section 3.10.2 (E-EDID Standard Release A, Revision 2)<br>Detailed Timings are stored in the 18 byte Descriptors located at<br>EDID addresses <b>36h</b> , <b>48h</b> , <b>5Ah</b> and <b>6Ch</b> . This allows the display<br>to give a complete timing definition. Detailed Timings allow the<br>display to give details of custom timings that cannot be expressed<br>in the Established or Standard Timing sections. Note that it is not<br>good practice to list (repeat) an Established Timing or a Standard<br>Timing in the Detailed Timing section. This is a redundant listing.<br>There is one exception. The Preferred Timing Mode (listed in the<br>First 18 Byte Descriptor) may be repeated in the Established<br>Timing or the Standard Timing sections. The display manufacturer<br>defines the "Preferred Timing Mode (PTM)" as the video timing<br>mode that will produce the best quality image on the display's<br>viewing screen.                                                                                                                                                                                                                                                                                                |  |  |  |  |  |

| Ref. # | Question                                                                                                                                                                                                                                                                                                                                                                                                       | Answer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| D-31   | In what section of the EDID timing code<br>is the maximum resolution of the display<br>set?                                                                                                                                                                                                                                                                                                                    | When a host (source) interprets the EDID content, all three<br>timings (Established, Standard & Detailed) must be considered to<br>get a complete picture of the formats and timings supported by the<br>display. The maximum resolution of the display would correspond<br>to the maximum format expressed by any of the three timing<br>sections. This is an indication of the maximum resolution<br>supported by the display. However, it is possible that a CVT<br>compliant display may support a higher resolution than is<br>indicated in the base EDID table. In this case, the maximum<br>resolution can not be determined.                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| D-32   | We are about to submit our LCD monitor<br>test results to Microsoft to get their<br>certification. But at this time, while<br>reading the EDID of our LCD, in the<br>monitor type, the word CRT appears<br>instead of LCD. In reading the E-EDID<br>Standard, there is no information to solve<br>this problem. Where do we modify the<br>EDID so the Microsoft software<br>EDIDW2K.exe displays LCD, not CRT? | The base EDID does not indicate the monitor type (CRT, LCD,<br>etc.). The monitor type is indicated (using manual input) in the<br>Microsoft Windows Hardware Quality Labs (WHQL) Test Tool.<br>Run the test tool. In the first screen, you have to manually input<br>the following information;<br>1. Enter monitor screen size<br>2. Select monitor type (CRT, LCD, etc)<br>3. Select connector type (VGA, DVI, etc).<br>Then complete the tests and the correct monitor type will appear in<br>the Test Log Report.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| D-33   | According to EDID Data Structure 1.3,<br>there are two bytes for ID product code.<br>But if the code is too long, or there are<br>letters in the product code how can I<br>write these two bytes? (example XX-<br>15SX)                                                                                                                                                                                        | It is important not to mix up the meaning of Product ID Code,<br>Product Name and Product Model Number.<br>Product ID is a 2 byte hexadecimal code (defined by<br>monitor manufacturer), which resides at addresses <b>0Ah</b> and <b>0Bh</b><br>(least significant byte first) in the base (block 0) EDID. (For<br>example, ViewSonic has a 23" LCD whose Product ID is<br>'7203(hex)'. The code is stored as '03h' at address <b>0Ah</b> and '72h'<br>at address <b>0Bh</b> .<br>Product Name is the name placed on the bezel of the<br>monitor, on the carton, in the user guide, etc. The ViewSonic<br>monitor above has a Product Name of VP230mb<br>Product Model Number is the model number used by<br>sales, RMA repair, etc. The ViewSonic monitor above has a model<br>number of VLCDS22494-1b.<br>The ID Code (stored in the base EDID) points to data in<br>an INF file. Microsoft defines the information required in the INF<br>file, which contains monitor manufacturer's name, Product Name,<br>Product Model Number, and other pieces of information. |

### 10. APPENDIX E – ASCII Reference Tables

Appendix E includes ASCII Tables. These are for reference only. For more information on ASCII Codes, refer to ISO/IEC 8859-1: 1998 Information Technology - 8-bit single-byte coded graphic character sets - Part 1: Latin alphabet No. 1 - ASCII Codes

| Dec | Hex | Char             | Dec | Hex | Char  | Dec | Hex | Char | Dec | Hex  | Char |
|-----|-----|------------------|-----|-----|-------|-----|-----|------|-----|------|------|
| 0   | 00  | Null             | 32  | 20  | Space | 64  | 40  | 0    | 96  | 60   | •    |
| 1   | 01  | Start of heading | 33  | 21  | !     | 65  | 41  | A    | 97  | 61   | a    |
| 2   | 02  | Start of text    | 34  | 22  | "     | 66  | 42  | в    | 98  | 62   | b    |
| 3   | 03  | End of text      | 35  | 23  | #     | 67  | 43  | с    | 99  | 63   | c    |
| 4   | 04  | End of transmit  | 36  | 24  | Ş     | 68  | 44  | D    | 100 | 64   | d    |
| 5   | 05  | Enquiry          | 37  | 25  | ÷     | 69  | 45  | E    | 101 | 65   | e    |
| 6   | 06  | Acknowledge      | 38  | 2.6 | æ     | 70  | 46  | F    | 102 | 66   | f    |
| 7   | 07  | Audible bell     | 39  | 27  | 1     | 71  | 47  | G    | 103 | 67   | g    |
| 8   | 08  | Backspace        | 40  | 28  | (     | 72  | 48  | н    | 104 | 68   | h    |
| 9   | 09  | Horizontal tab   | 41  | 29  | )     | 73  | 49  | I    | 105 | 69   | i    |
| 10  | OA  | Line feed        | 42  | 2A  | *     | 74  | 4A  | J    | 106 | 6A   | j    |
| 11  | OB  | Vertical tab     | 43  | 2 B | +     | 75  | 4B  | ĸ    | 107 | 6B   | k    |
| 12  | 0C  | Form feed        | 44  | 2C  | ,     | 76  | 4C  | L    | 108 | 6C   | 1    |
| 13  | OD  | Carriage return  | 45  | 2 D | -     | 77  | 4D  | М    | 109 | 6D   | m    |
| 14  | OE  | Shift out        | 46  | 2 E |       | 78  | 4E  | N    | 110 | 6E   | n    |
| 15  | OF  | Shift in         | 47  | 2 F | /     | 79  | 4F  | o    | 111 | 6F   | o    |
| 16  | 10  | Data link escape | 48  | 30  | o     | 80  | 50  | P    | 112 | 70   | р    |
| 17  | 11  | Device control 1 | 49  | 31  | 1     | 81  | 51  | Q    | 113 | 71   | q    |
| 18  | 12  | Device control 2 | 50  | 32  | 2     | 82  | 52  | R    | 114 | 72   | r    |
| 19  | 13  | Device control 3 | 51  | 33  | 3     | 83  | 53  | s    | 115 | 73   | s    |
| 20  | 14  | Device control 4 | 52  | 34  | 4     | 84  | 54  | Т    | 116 | 74   | t    |
| 21  | 15  | Neg. acknowledge | 53  | 35  | 5     | 85  | 55  | U    | 117 | 75   | u    |
| 22  | 16  | Synchronous idle | 54  | 36  | 6     | 86  | 56  | v    | 118 | 76   | v    |
| 23  | 17  | End trans. block | 55  | 37  | 7     | 87  | 57  | ឃ    | 119 | - 77 | w    |
| 24  | 18  | Cancel           | 56  | 38  | 8     | 88  | 58  | x    | 120 | 78   | x    |
| 25  | 19  | End of medium    | 57  | 39  | 9     | 89  | 59  | Y    | 121 | 79   | У    |
| 26  | 1A  | Substitution     | 58  | ЗA  | :     | 90  | 5A  | z    | 122 | 7A   | z    |
| 27  | 1B  | Escape           | 59  | ЗВ  | ;     | 91  | 5B  | C I  | 123 | 7B   | {    |
| 28  | 1C  | File separator   | 60  | ЗC  | <     | 92  | 5C  | ١    | 124 | 7C   | I I  |
| 29  | 1D  | Group separator  | 61  | ЗD  | -     | 93  | 5D  | ]    | 125 | 7D   | }    |
| 30  | 1E  | Record separator | 62  | ЗE  | >     | 94  | 5E  | ^    | 126 | 7E   | ~    |
| 31  | 1F  | Unit separator   | 63  | ЗF  | 2     | 95  | 5F  | _    | 127 | 7F   |      |

#### Table ASCII -I

TABLE ASCII -II

| Dec | Hex | Char | Dec | Hex | Char       | Dec | Hex | Char | Dec | Hex        | Char |
|-----|-----|------|-----|-----|------------|-----|-----|------|-----|------------|------|
| 128 | 80  | ç    | 160 | AO  | á          | 192 | CO  | L    | 224 | EO         | α    |
| 129 | 81  | ü    | 161 | A1  | í          | 193 | C1  | т    | 225 | E1         | ß    |
| 130 | 82  | é    | 162 | A2  | ó          | 194 | C2  | т    | 226 | E2         | Г    |
| 131 | 83  | â    | 163 | A3  | ú          | 195 | C3  | F    | 227 | E3         | п    |
| 132 | 84  | ä    | 164 | A4  | ñ          | 196 | C4  | -    | 228 | E4         | Σ    |
| 133 | 85  | à    | 165 | A5  | Ñ          | 197 | C5  | +    | 229 | E5         | σ    |
| 134 | 86  | å    | 166 | A6  | 2          | 198 | C6  | F    | 230 | <b>E</b> 6 | μ    |
| 135 | 87  | ç    | 167 | A7  | •          | 199 | C7  | ┠    | 231 | E7         | τ    |
| 136 | 88  | ê    | 168 | A8  | č –        | 200 | C8  | L    | 232 | E8         | Φ    |
| 137 | 89  | ë    | 169 | A9  | <b>-</b>   | 201 | C9  | F    | 233 | E9         | 0    |
| 138 | 8A  | è    | 170 | AA  | <b>-</b>   | 202 | CA  | ᄟ    | 234 | EA         | Ω    |
| 139 | 8B  | ï    | 171 | AB  | ₩          | 203 | СВ  | π    | 235 | EΒ         | δ    |
| 140 | 8C  | î    | 172 | AC  | <b>ئ</b> د | 204 | CC  | F    | 236 | EC         | œ    |
| 141 | 8D  | ì    | 173 | AD  | i          | 205 | CD  | =    | 237 | ED         | ø    |
| 142 | 8 E | Ä    | 174 | AE  | «          | 206 | CE  | ÷    | 238 | ΕE         | ε    |
| 143 | 8 F | Å    | 175 | AF  | »          | 207 | CF  | 느    | 239 | EF         | n    |
| 144 | 90  | É    | 176 | BO  |            | 208 | DO  | ш    | 240 | FO         | =    |
| 145 | 91  | æ    | 177 | B1  |            | 209 | D1  | ┯    | 241 | F1         | ±    |
| 146 | 92  | Æ    | 178 | B2  |            | 210 | D2  | π    | 242 | F2         | ≥    |
| 147 | 93  | Ô    | 179 | B3  | 1          | 211 | DЗ  | L    | 243 | F3         | ≤    |
| 148 | 94  | ö    | 180 | В4  | 4          | 212 | D4  | F    | 244 | F4         | ſ    |
| 149 | 95  | ò    | 181 | B5  | ŧ          | 213 | D5  | F    | 245 | F5         | J    |
| 150 | 96  | û    | 182 | B6  | 1          | 214 | D6  | г    | 246 | F6         | ÷    |
| 151 | 97  | ù    | 183 | В7  | п          | 215 | D7  | ⋕    | 247 | F7         | ~    |
| 152 | 98  | ÿ    | 184 | B8  | ٦          | 216 | D8  | ŧ    | 248 | F8         | •    |
| 153 | 99  | Ö    | 185 | B9  | ㅔ          | 217 | D9  | L    | 249 | F9         | -    |
| 154 | 9A  | Ü    | 186 | BA  |            | 218 | DA  | г    | 250 | FA         | •    |
| 155 | 9B  | ¢    | 187 | BB  | า          | 219 | DB  |      | 251 | FΒ         | 4    |
| 156 | 90  | £    | 188 | BC  | Ъ          | 220 | DC  | -    | 252 | FC         | P    |
| 157 | 9D  | ¥    | 189 | BD  | ш          | 221 | DD  | I    | 253 | FD         | 2    |
| 158 | 9E  | E.   | 190 | BE  | F          | 222 | DE  | I    | 254 | FΕ         | •    |
| 159 | 9F  | f    | 191 | BF  | ٦          | 223 | DF  |      | 255 | FF         |      |